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Espacios vectoriales 
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En el estudio de las matrices y, en 
particular, de los sistemas de ecuaciones 
lineales realizamos sumas y multiplicación por 
escalares con un tipo especial de matrices, las 
de orden nx1.

Abusando del lenguaje y la notación establecimos la 
correspondencia:
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Es decir, aceptamos que                             ,  con el fin de 
aprovechar la familiaridad que se tiene  con  los espacios 

En este capítulo estudiaremos conjuntos que 
poseen propiedades algebraicas similares a

n
1nx       )(M ℜ≅ℜ

.  y  32 ℜℜ

.nℜ

A dichos conjuntos se les dará el nombre de 
espacios vectoriales y a sus elementos el 
nombre de vectores.

En lo que sigue      designará al cuerpo      de los números 
reales o al cuerpo  C de los números complejos. 

ℜκ
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Un espacio vectorial sobre el cuerpo      es un conjunto 
de objetos  V  con dos operaciones:

(1) + : V x V                      V  ;   (u, v)                  u + v
que es asociativa, conmutativa, posee elemento neutro         

(cero) y cada elemento posee un inverso.
(2)   p:      x V                      V  ;   (   , v)                

que satisface lo siguiente: 

Espacios y subespacios vectoriales 

v⋅αα

 V,vv;v1    )iv
Vv,u;v;u)v(u   )iii
Vv;,;vvv)()ii

Vv;,;v)()v()i

∈∀=⋅
∈∀κ∈α∀α+α=+α
∈∀κ∈βα∀β+α=β+α

∈∀κ∈βα∀αβ=βα

κ

κ

con  1  elemento unidad de  κ
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Los  elementos  de  V  se llaman  vectores y los de      
escalares.   Si                ,  se  dice  que  V  es  un   espacio 
vectorial real.   Si        =  C ,  el espacio vectorial  V  se dice 
complejo.  

En cualquier espacio vectorial  V  sobre       se tiene que:  

Vvv,v(-1)    )d
)0v0(0v    )c

,00)b
Vv,0v0)a

∈∀−=⋅
=∨=α⇒=⋅α

κ∈α∀=⋅α
∈∀=⋅

La operación (1) es interna en V; se llama suma 
o adición.  La operación (2) es externa y se llama 
multiplicación por escalar o ponderación.

κ
κ ℜ=

κ

κ
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Ejemplos de espacios vectoriales  

} n , . . . . 1,i  ,  /  x) x, . . . . . ,x({ in1
n =∀ℜ∈=ℜ

(1)     Para  n número natural,  sea 
(n veces), es decir,     

ℜ××ℜ=ℜ . . . .n

nℜ

ℜ∈ααα=α

++=+

,)x , . . . . ,x() x, . . . . ,x(                  
)a x, . . . . ,ax()a , . . . . ,a() x, . . . . ,x(

n1n1

nn11n1n1

con las operaciones siguientes:  

es  un espacio vectorial real.

En consecuencia,     es un espacio vectorial 
sobre sí mismo.

ℜ
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El espacio vectorial real  2ℜ
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El espacio vectorial real  3ℜ
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Suma en   3ℜ
3ℜPonderación  en   
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(2) No sólo       es un espacio vectorial sobre     . Si  IK es 
un cuerpo, IK  es un espacio vectorial sobre si mismo.  En 
este caso, la ponderación coincide con la multiplicación 
del cuerpo IK.  En consecuencia, C (números complejos) 
es un espacio vectorial complejo. Pero  C también es un 
espacio vectorial real si se considera la ponderación:  

(3) Para               , el conjunto               de las matrices
reales de orden mxn, con las operaciones suma y 
multiplicación habituales de las matrices, es un espacio 
vectorial real.  

(4) El conjunto         de los polinomios en x con coeficientes 
reales, con las operaciones suma y ponderación usuales, 
es un espacio vectorial sobre     .

INn ,m ∈

ℜ

ℜ

ℜ

ℜ∈αα+α=+α    , bia)bia(

)(Mmxn ℜ

]x[ℜ
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(6) Si            , el conjunto
con la suma y ponderación usuales de las funciones, es   

un espacio vectorial sobre     .

}, función  /  A:f{),A(F ℜ→=ℜ

(5) Para n número natural, denotemos por
 } n  grado  de  p(x)  /  [x])x(p{]x[Pn ≤ℜ∈=

, con las operaciones suma y multiplicación por 
escalares reales, es un espacio vectorial real.

]x[Pn

ℜ⊆A

ℜ

¿Cuál es el elemento cero de los 
siguientes espacios vectoriales reales?          

,nℜ )(Mmxn ℜ    y]x[P  , n ),A(F ℜ
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Los siguientes conjuntos, con las operaciones 
suma y ponderación habituales de los respectivos 
espacios, no son espacios vectoriales reales.

}   en creciente  f  /  ) ,(Ff {D
}  0det(A)  /   )(M A{C

} a  /  [x]P5x  a {B

} 32x   /   y   y),x({A

n

2
2

2

ℜℜℜ∈=

≠ℜ∈=
ℜ∈∈+=

−=ℜ∈=

Ejercicio:  Demuestre que los conjuntos A, B, C  y  
D mencionados anteriormente, no son espacios 
vectoriales reales.
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Cuando un subconjunto W de un espacio 
vectorial V sobre el cuerpo   , con las 
operaciones de V restringidas a sus 
elementos, resulta ser un espacio vectorial 
sobre  , entonces se dice que W es un 
subespacio vectorial (o subespacio lineal o 
simplemente subespacio) de V.

Por lo tanto,
W  es un subespacio de V

O equivalentemente,
W0    V ∈⇒

WW0V ⇒∉ no es subespacio de V          

κ

κ
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El siguiente teorema caracteriza a los subespacios de V.

Teorema: Sea V un espacio vectorial sobre       y  W  
un subconjunto no vacío de V.   W es un subespacio de V  
si  y  sólo  si

Wu      Wu  ,)ii
Wvu      Wv ,u  )i
∈α⇒∈∀κ∈α∀

∈+⇒∈∀

Del teorema anterior sigue que, si V es un espacio 
vectorial sobre    , entonces V  y  { 0 }  son subespacios
vectoriales de V.

κ

κ
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Ejemplo:   El conjunto  no es 
un subespacio de         pues,  por ejemplo,  u = (2, 4)      D,  
v = (3, 9)      D   y   u + v = (5, 13)      D.

}  x  /   y   y),x({D 22 =ℜ∈=
∈

∈

2ℜ
∉

Ejemplo:   El conjunto  es 
un subespacio de        ; en efecto,

} 0 z-2x  /  z)    y,,x({W 3 =ℜ∈=
3ℜ

}   y  ,    /   x 2x)    y,,x({W ℜ∈=
y se tiene que,
i) 0 = (0, 0, 0) 
ii) (x, y, 2x) + (a, b, 2a) = (x + a,  y + b,  2(x + a))      W
iii)

∅≠∈     y    WW
∈

W)x2,y,x()x2,y,x( ∈ααα=α

En virtud del teorema enunciado anteriormente,  W es 
un subespacio de        . 3ℜ
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Ejemplo:  El conjunto  U = { A                   / A es simétrica}     
es un subespacio de                ; efectivamente,

)(Mn ℜ∈

)(Mn ℜ

    ;UO    )i n ∈

UA                                 
AAA)(     U)  A  (   ii)

UB  A                     
BABAB)(A                       

)BB      A(A    U  B     A,i)

tt

ttt

tt

∈α⇒
α=α=α⇒∈∧ℜ∈α

∈+⇒
+=+=+⇒

=∧=⇒∈

Por lo tanto,  W es un subespacio de              . 

puesto que la matriz nula es simétrica.

Luego     U ∅≠

)(Mn ℜ
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Ejercicio: Demuestre que los siguientes conjuntos 
son subespacios del respectivo espacio. 









=∧=+ℜ∈







=

=+∧=++ℜ∈=

=+∈++=

=ℜ∈=

0b-2c    0d-b3a   /   )(M
dc
ba

S

} 02tz-   y   0t43y  /  xt) z,  y,(x, {S

} 02ca  /  [x]P xcbx a {S

}4x    /   y   y),x({S

24

4
3

2
2

2

2
1

Ejercicio: Muestre 3 ejemplos de 
conjuntos que sean subespacios de         

y 3 conjuntos que no sean 
subespacios de         .

3ℜ
3ℜ
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Teorema: Sea  V un espacio vectorial sobre       y  sean  
U  y  W  subespacios de V.   Entonces           es un 
subespacio de V.

κ
WU∩

Efectivamente, como  0V pertenece a  U  y también a  W,   
Además si u, v son vectores de              ,  .WU0V ∩∈ WU∩

WUu   
Wu      Uu   

Wu      Uu      
,   y   WUu      

∩∈α⇒
∈α∧∈α⇒

∈∧∈
κ∈α∩∈

WU vu  
Wvu      Uvu  

Wv    Uv  V  u    Uu

∩∈+⇒
∈+∧∈+⇒

∈∧∈∧∈∧∈

Finalmente, si   
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Es posible demostrar que la intersección de 
cualquier colección de subespacios de un 
espacio vectorial V es un subespacio de V.  

También es fácil mostrar que la unión de dos subespacios
de un espacio vectorial  V  no es un subespacio de V. 
Por ejemplo, considere los subespacios de       : 

U = { (x, y)  /  y = 2x }
W = { (x, y)  /  y = 3x }

Entonces  U U W  no es un subespacio de      .
¿Por qué?

2ℜ

2ℜ
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Combinaciones lineales - generadores 

Sea  V  es un espacio  vectorial  sobre         y
un conjunto de vectores 

de V.  Una combinación lineal de  vectores  
de  S  (o de                )  es un vector de la 
forma donde   

}v , . . . . . ,v{S n1=

n1 v , . . . . . ,v
 ,v . . . . . . vv nn11 α++α=

Por ejemplo, el vector v = (-1, -2, 7) del espacio      es  
combinación  lineal  de  los  vectores   s = ( 1, -4, 3)   y       
t = (-2, 5, -1)  puesto que   v = 3 s + 2 t.

3ℜ

κ

., . . . . , n1 κ∈αα
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El conjunto de todas las combinaciones lineales 
de vectores de S resulta ser un subespacio
vectorial de V; se llama espacio generado por 
S (o espacio generado por              ) y se 
denota  <S>  o   <                     >.

n1 v , . . . . . ,v
}v , . . . . . ,v{ n1

Ejemplo:  Determinemos el subespacio generado por los 
vectores :   de   1)  1,-  0,(v   y   2)  0,  ,1(v 3

21 ℜ==

} y -2x   z  /   z)    y,(x, {                    

}   ,  /  )2  ,-  ,( {                    
}   ,  /  1) 1,- (0,2) 0, (1, {                    

}   ,  /  vv {  }v  ,v{

3

2121

=ℜ∈=

ℜ∈βαβ+αβα=
ℜ∈βαβ+α=

ℜ∈βαβ+α=><
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Ejemplo:  Sea
¿El vector                                pertenece a  < S > ?
La pregunta equivale a  ¿existen tales que     

[x]P  } 2x3x-1   ,x5x-2 {S 2
22 ⊂++=

2x54x-2p(x) −=

?5x-4x-2)2x3x-1()x5x-(2 222 =+β++α

Esta igualdad nos conduce a 

Sistema que resulta incompatible y,  en consecuencia,           

52
435

2  2

−=β+α
−=β−α−

=β+α

>∉<Sp

ℜ∈βα   ,
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Ejercicio:  Determine si las 
siguientes afirmaciones, relativas a 
un espacio vectorial V, son 
verdaderas o falsas:

V o F

T  S      T    S     D)
 T     S    T  S    )

 }v , . . . . . ,{v v   n, , . . . . 1,k    B)
V S    ,S0    A)

n1k

=⇒><=><
><⊆><⇒⊆

><∈=∀
⊆∀><∈

C

Si  V  es un espacio vectorial y S es un subconjunto de 
V, puede ocurrir que < S > = V;  en este caso se dice 
que S genera a V o que V está generado por S.
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Ejemplo:  Consideremos los vectores de      ,  
Entonces            

0), 0, ,1(e 1 =

1). 0, ,0(e   y   0) 1, ,0(e 32 == } e  ,e  ,e { 321

3ℜ

3

321

                         

}c b, a,  /  c) b, {(a,                            
} c b, a,  /  1) 0, ,0(c0) 1, b(0,0) 0, {a(1,   } e  ,e  ,e {

ℜ=

ℜ∈=

ℜ∈++=><

Puntos en el espacio   3ℜ

genera al espacio        ;  en efecto, 3ℜ
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está generado por  ℜ 1e1 =

0       1

está generado por  2ℜ
1) ,0(e  0), ,1(e 21 ==

1

1

P2[x] está  generado  por  {1, x, x2 } puesto  que

¿Cuáles son los generadores “naturales” de  M2(     )? 

22 xcxb1acxbxa ⋅+⋅+⋅=++

ℜ
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En       , consideremos los vectores  u = (1, 0, -1, 0),  
v = (0, 1, 0, -1)  y  w = (1, -1, -1, 1).   Entonces,
< {u, v, w} > =

= {(a, b, c, d)  / a + c = 0  y  b + d = 0 }  

4ℜ

Es decir,  < {u, v, w} > = < {u, v} >.  Este hecho no es 
casual, se deriva de la “dependencia lineal” que existe 
entre u, v, w  que, en este caso,  significa  w = u – v. 

Dependencia lineal 

Por otra parte,
< {u, v} > = 

= {(a, b, c, d)  /  a + c = 0  y  b + d = 0] 

} , , / )- ,- , ,{( ℜ∈γβαγ+βγ−αγ−βγ+α

} , / )- ,- , ,{( ℜ∈βαβαβα
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Sea V espacio  vectorial  sobre       y
un conjunto de vectores de V.  

Se dice que S es  linealmente dependiente
(l.d.) si existen escalares                      no todos 
nulos tales que 

}v , . . . . . ,v{S n1=

n1 , . . . . . , αα
0v . . . . . . v nn11 =α++α

Si  S  no es l.d., se dice que S es linealmente 
independiente (l.i.).   Por lo tanto  S  es l. i. si

n , . . . . 1,i  ,0        0v . . . . . . v inn11 =∀=α⇒=α++α

Por ejemplo, los vectores son l. i.
¡demuéstrelo!

3
321    de   e  ,e  ,e ℜ

κ
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



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
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






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






=








=

10
00

E    ,
01
00

E    ,
00
10

E    ,
00
01

E 4321

Sea ei el vector de      que tiene todas sus componentes 
iguales a cero, excepto la i-ésima que es uno.   Entonces 
el conjunto de vectores {e1, . . . ,en}, además de generar 
a       , es un conjunto l. i.   

nℜ

nℜ

El conjunto  {1, x, x2 }  de generadores de 
P2[x]  es un conjunto l. i.   

Los vectores 

generan al espacio  M2(     )  y  son l. i.   ℜ
Ejercicio:  Demuestre las afirmaciones hechas antes. 
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Ejercicio:  Determine si los siguientes conjuntos 
son l. i. 

)(M
40
41-

   ,
22
03

  ,
11
21

 S

]x[P} 2x-1   ,x3x   ,2x-2x 1 {S

} 2) 3, (-1,  1),  0, (-1,  2),- 1,  ,1({S

} 0) 0, (1,  0), 1, (1,  1), 1, ,1({S

24

2
222

3

3
2

3
1

ℜ⊂















 −








−







 −
=

⊂++=

ℜ⊂=

ℜ⊂=

Ejercicio: Sean V  espacio vectorial sobre    , u y  v  
vectores de V.    

a) ¿Bajo que condiciones  { v }  es  l. i.?
b) ¿Bajo que condiciones  { u,  v }  es  l.d.? 

κ
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Ejercicio:  Suponga que  { v1,  v2,  v3 } es un  conjunto 
linealmente independiente de vectores de un espacio 
vectorial V.   
Demuestre que  {v1 + v2 – 2v3,  2v2 + v3,  v1 – 2v3 }  es 
también un conjunto linealmente independiente de V.

Ejercicio:  Sea V  espacio vectorial sobre      . 
Demuestre que:   
a)
b)
c)

κ

 l.i.  S      ) l.i.   T      TS( ⇒∧⊂
d l.  S      S0 ⇒∈

 l.d.  T      ) l.d.   S      TS( ⇒∧⊂
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Base - dimensión 
Sea  V  un espacio  vectorial sobre el cuerpo    .    
Una base de V es un conjunto  B  de vectores 
de V que es  linealmente independiente y 
generador de V. 

Por ejemplo,  para cada           el conjunto B = { e1, . . . . , en}  
de vectores de       , es una base de     ;  se llama base 
canónica (o usual) de       .       

nℜ
INn∈

κ

nℜ
nℜ

Los conjuntos

son las bases canónicas de                        respectivamente.       








































=

=

10
00

  ,
11
00

  ,
00
10

  ,
00
01

 B

} x x,1, {B 2

)(M   y   ]x[P 22 ℜ
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¿Todo espacio vectorial
tiene una base?

Si un espacio vectorial posee un conjunto finito de 
generadores S, S   {0},  entonces S contiene a 
una base de V.     

≠

Para demostrar este hecho consideremos S = {v1, . . . , vm}.
(*)  Si S es l.i., entonces S es base de V.  Si S no es l.i., 
alguno de los vectores de S, llamemos vi depende 
linealmente de los demás y el conjunto S(1) = S – {vi} sigue 
generando a V.  Y volvemos a (*) pero ahora con S(1).
Repitiendo este proceso llegamos a obtener una base de V 
que, al menos, tendrá un solo vector no nulo.   
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¿Cada espacio vectorial
tiene una única base?

No, por ejemplo, sea B el conjunto de vectores de 
B = {(-2, 1, 0), (1, 3, 2), (1, 1, 1)}

     
02

03
02

        

0) 0, (0,1) 1, ,1(2) 3, ,1(0) 1, ,2(

=γ+β
=γ+β+α
=γ+β+α−

⇒

=γ+β+−α

3ℜ

i) Demostremos que  B es linealmente independiente.
Sean                       tales que   ℜ∈γβα   , ,

Luego  B  es l. i.   

Sistema que tiene solución 
única   0  ,0  ,0 =γ=β=α
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c2

b3
a2

        

c) b, (a,1) 1, ,1(2) 3, ,1(0) 1, ,2(

=γ+β
=γ+β+α
=γ+β+α−

⇒

=γ+β+−α

Luego B genera a        y B es una base de       .  

En consecuencia,   

3ℜ

ii) Demostremos que  B  genera a        .
Sea                        y                       tales que   ℜ∈γβα   , ,

3ℜ
3 c) b, ,a( ℜ∈

Sistema que tiene solución única   
        

7c4b-2a   
3c-b2a

c2ba
 

+−=γ
+=β

+−−=α

(-a-b+2c)(-2, 1, 0) + (a+2b-3c)(1, 3, 2) + (-2a-4b+7c)(1, 1, 1) = (a, b, c)   

3ℜ
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Ejercicio:  Suponga que  { v1,  v2,  v3 } es 
una base de un espacio vectorial V.   
Demuestre que  {v1 + 2v2 – v3,  v2 + 3v3,  
v1 + 4v2 + 6v3 } también es una base de V.

Ejercicio:  Determine si los conjuntos S1, S2 son 
base del espacio P2[x].

S1 = { 2 + 3x + x2,  3 + x,  -1 + 2x + x2 }
S2 = {1 + x2,  -1 + x,  2 + 2x }  
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Un espacio vectorial V sobre    puede tener múltiples 
bases, pero se puede demostrar que todas ellas, cuando 
son finitas, tienen el mismo número de elementos (la 
misma cardinalidad).  Este hecho nos permite entregar el 
siguiente concepto:

Si  V  es un espacio vectorial sobre    
que tiene  una  base  B  con  n  vectores, 
entonces se dice que V es un espacio de 
dimensión finita y el número entero  n  se 
llama dimensión de V.

κ

κ

Si  V  tiene dimensión n, anotaremos  dimKV = n o     
dim V = n, si no hay lugar a confusión.    
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¿Cuál es la dimensión 
del espacio {0}

El espacio V = {0} no posee base, sin 
embargo se le asigna la dimensión cero:    

dim {0} = 0

En consecuencia,   

mn)(M dim     ,4)(M dim
1n]x[P dim      ,3]x[P dim

n dim     1, dim

mn2

n2

n

=ℜ=ℜ

+==
=ℜ=ℜ
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Ejemplo:  Determinemos la dimensión del subespacio
de  P2[x] ,  W = { a + bx + cx2 /  2a – b + 4c = 0} 

>++<=

ℜ∈+++=

ℜ∈+++=

+=++=

} x4x  2x,1 {      

} c a,  /  )x(4xc2x)a(1 {      

} c  a,  /  cx4c)x(2aa {      

}4c 2ab  /  cxbx{a  W

2

2

2

2

Siendo B = { 1 + 2x,  4x + x2 } un conjunto generador de 
W y linealmente independiente, puesto que B tiene dos 
vectores y uno no es “múltiplo escalar” del otro,  B es una 
base de W;  luego dim W = 2.   

Se tiene que   
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Observaciones:  
1) La dimensión del espacio vectorial real  C de los 

números complejos es 2.   Pero si consideramos a  
C como espacio vectorial sobre si mismo, 
entonces  C es un espacio de dimensión 1.
Justifique esta afirmación.

2) Existen espacios vectoriales que no poseen una 
base finita.  Dichos espacios se dicen de 
dimensión infinita; por ejemplo, el espacio 
vectorial real C([a, b];    ), de todas las funciones 
reales continuas en [a, b] tiene dimensión infinita.
Muestre otro ejemplo de un espacio vectorial de 
dimensión infinita.

ℜ
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Sea V un espacio vectorial sobre   de 
dimensión finita n.   La demostración de los 
siguientes teoremas queda de ejercicio.

1. Si  S = {v1, . . . . , vm}      V,  con m > n, entonces S es l.d.

2. Si  B = {v1, . . . . , vn}     V  es l. i.,  entonces B es base de V.

3. Si  B = {v1, . . . . , vn}     V  es generador de V, entonces B 
es base de V. 

4. Si  W  es un subespacio de V,  entonces   

5. Si W es un subespacio de V tal que dim W = n,  entonces   
V = W.

⊂

n Wdim ≤

⊂

κ

⊂
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Teorema (Completación de base)
Sea V espacio vectorial sobre      de dimensión finita n. 
Si                                 con k < n,  es un conjunto lineal-
mente  independiente,   entonces  existen   vectores            

tales que                                
es base de V.

V,}v , . . . . . ,v{ k1 ⊂

Vv , . . . . . ,v n1k ∈+ }v , . . . ,v ,v , . . . . ,v{ n1kk1 +

En un espacio vectorial V de dimensión finita, 
un conjunto linealmente independiente de 
vectores de V puede completarse hasta 
formar una base de V.

Ejercicio:  Demuestre el teorema precedente.

κ
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Ejercicio:  Considere el subespacio de M2(R),

a) Determine una base S para W.

b) Encuentre una base B de M2(R)  que contenga a la 
base S de W. 









=+∧=+







= 03d-ba    0 4d-c2b-a  /  

dc
ba

W

Ejercicio:  Determine todos los valores del número k 
de modo que el conjunto

B = { (1, 1, -1), (3, k, k), (4, k, 0)}
sea una base de R3.
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El siguiente teorema nos proporciona otra 
caracterización para las bases de un espacio 
vectorial de dimensión finita.

Teorema:   Sea  V  espacio  vectorial  sobre      y sea 
B = {v1, . . . . , vn}  conjunto de vectores de V.
B  es base de V           todo vector  v  de  V se escribe 

de una única manera como 
combinación  lineal  de  los
vectores  de  B.   

⇔

κ

Ejercicio:  Demuestre el teorema precedente.
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El  teorema precedente asegura que para cada
existen únicos escalares                              tales que

Vv∈
κ∈αα n1  , . . . . . ,

nn11 v  . . . . . vv α++α=

) , . . . . . ,(]v[ n1B αα=

Observe que          es un vector de        .  Por esta razón, 
muchas veces es llamado vector coordenado.    

B]v[

Estos escalares reciben el nombre de 
coordenadas del vector v con respecto 
a la base (ordenada) B y se denotan

nκ
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¿Cuáles son las coordenadas de v = (6, -5)  con respecto 
a la base ordenada  B = {(5, - 3),  (2, -1)} ?   

Ejemplo: Las coordenadas del vector v = (6, -5)        con 
respecto a la base canónica  E = {(1, 0),  (0, 1)} de       son2ℜ

7)-  ,4(]v[ B =

)5-  ,6(]v[ E =

2ℜ∈

Debemos resolver para                    la ecuaciónℜ∈βα    ,
5)-  (6, 1)-  ,2(  3)-  ,5( =β+α

es decir,

De aquí,

5-  3-
625

=β−α
=β+α
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Ejemplo: Sea            tal que                       ,  donde B es 
la base ordenada  B = {(1, -1, 3),  (1, 0, -2),  (3, 1, -1)}.   
¿Cuál es el vector v?   Determinemos [ v ]C , donde C es 
la base  C = {(1, 0, 1),  (1, 1, 2),  (1, 1, 4)}.              

3v ℜ∈ 2) 1,- ,1(]v[ B =

El vector es  v = 1(1, -1, 3) - 1(1, 0, -2) + 2(3, 1, -1) = (6, 1, 3) 
Determinemos tales que  ℜ∈γβα   , ,

3) 1, ,6()4 1, (1,2) 1, 1,()1 0, ,1( =γ+β+α
Esto requiere resolver el sistema compatible  

             
342

1
6

      
=γ+β+α

=γ+β
=γ+β+α

Obtenemos  [ v ]C = (5, 3, -2)
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Ejemplo:  Consideremos la base ordenada de  P2[x]       

Determinemos las coordenadas del vector            
con respecto a la base B, esto es, 

encontremos                        tales que 

}3x2  x,1  ,x1{B 22 +++=

23x-x54)x(p +=

ℜ∈γβα   , ,
222 x3x54)3x(2x)1()x1( −+=+γ++β++α

Reordenando e igualando polinomios obtenemos el 
sistema:   

             
-33

5
42

        
=γ+α

=β
=γ+β+α

⇒

cuya solución nos conduce a   
)2-  5,  ,3()]x(p[ B =
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Sea  V  espacio  vectorial  sobre      y  B  una base 
ordenada de V.   Entonces,    

κ

κ∈α∀∈∀α=α

∈∀+=+

  V,v   , [v]  v][   (2)
Vu v,   , ]u[[v]  u][v    )1(

BB

BBB

Ejercicio:  Sea  B = { v1,  v2,  v3 }  una base ordenada 

de  R3.   Determine los vectores de  B  si se sabe que  
(-1, 1, 1),  (1, -1, 2)  y  (3, -1, 1)  son las respectivas 
coordenadas, según la base B,  de los vectores  e1, e2,  
e3 de la base canónica de  R3 . 
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Suma  y  Suma directa 
Sea  V  un espacio vectorial sobre      y sean U, W dos 

subespacios de V.
Ya mencionamos que la unión de U y W no es, 

necesariamente, un subespacio de V.  Definiremos U + W, 
la suma de U y W; esta resultará ser un subespacio de V 
que contendrá a ambos subespacios.   

κ

} W  wU,u  w, u  vV  /  v {WU ∈∈+=∈=+

La suma de  U  y  W  es:  
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Se tiene que:
i) 0V = 0 + 0,  con  0    U  y  0    W 
ii) Si  v1= u1 + w1 y   v2 = u2 + w2 son vectores de U + W, 

entonces  v1 + v2 = (u1 + u2) + (w1 + w2)      U + W.
iii) Si              , entonces    

∈ ∈

∈
κ∈α WUwuv 111 +∈α+α=α

Por lo tanto  U + W  es un subespacio de V.  Además se 
puede establecer que:  

W)dim(U  -   Wdim    U dim  W)(U dim   )3(
TS WU   entonces  ,T     y   WS  U  Si   (2)

WU    y    WWUU    )1(

∩+=+

∪=+==

+⊆+⊆
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Puede suceder que  dim(U + W) = dim V,  
es decir,  V = U + W.   Por ejemplo, 
donde 

WU2 +=ℜ

Si  V = U + W,  los vectores de V no necesariamente se 
escriben de manera única como una suma de un vector 
de U y un vector de W.    En el ejemplo anterior,  

(3, 3) = 2(0, 1) + (3, 1)
(3, 3) = -6(1, 0) + 3(3, 1)    

1)}  ,3{(W    y    1)}  ,0(  0),  ,1{(U ==

En efecto,  es claro que
Por otra parte, si , entonces    

2WU ℜ⊆+
2  y),x( ℜ∈

WU   )  (x,    )-  y,0(  y),x( 3
x

3
x +∈+=
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Observe que:  

 w u  v  : W w  U,u   V,v      WUV +=∈∃∈∃∈∀⇔+=

Sea  V  un espacio vectorial sobre      y 
sean U, W dos subespacios de V.  Se dice 
que V es la suma directa de U y W, en cuyo 
caso se anota                     si    

κ

 w u  v  : W w!  U,u!  V,v +=∈∃∈∃∈∀

WUV ⊕=

Ejercicio:  Sean   U = < {(0, 1)} >   y   W = < {(3, 1)} > 
subespacios de  R2 .    Demuestre que  R2 es suma 
directa de U  y  W.
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Una caracterización útil de la suma directa la entrega el 
siguiente teorema:  

Teorema:  Sea  V  un espacio vectorial sobre      y  sean 
U, W dos subespacios de V. 

κ

{0})WU        W U (V       WUV =∩∧+=⇔⊕=

Ejercicio:  Demuestre el teorema precedente. 

Consecuencia del teorema anterior es la siguiente:  
Si  V  es un espacio vectorial de dimensión finita y 

, entonces  dim V = dim U + dim W.WUV ⊕=
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Ejercicio:  Considere los subespacios de  R3

U1 = { (x, y, z)  :  x + y + z = 0 }
U2 = < { (1, 1, 1) } >

Demuestre que  R3 es suma directa de  U1 y  U2.

>

Ejercicio:  Sean  S1 y  S2 los subespacios de  M2( R)

¿Es  M2(R)  suma directa de  S1 y  S2?








=ℜ∈







=

ℜ∈=

 0  d  /  )(M  
dc
ba

 S

}  diagonal  /  A   )(M  A { S

22

21
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Dado un subespacio U de V, ¿existe un 
”suplementario” de U? Es decir, existe un 
subespacio  W  de  V  tal  que                    .   WUV ⊕=

Teorema:  Sea  V  un espacio vectorial sobre       de 
dimensión finita  n  y  sea  U   subespacio de V.   
Entonces existe  W  subespacio de V  tal  que                   .   

κ

WUV ⊕=

En efecto,  si  U = V, basta tomar  W = {0}.  Supongamos 
que  dim U = k < n  y sea  { v1, . . . , vk}  una base  de  U.  
Por el teorema completación de base,  existen  vk+1, . . . , 
vn vectores de V  tales que  { v1, . . . . , vn }  es base de V.  
Sea  W =  { vk+1, . . . , vn}   ;  entonces .    WUV ⊕=
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El suplementario de un subespacio U no es 
único.   En     cualquier par de rectas no 
colineales que pasen por el origen, están 
asociadas a subespacios suplementarios.   

2ℜ

Ejercicio:  Considere el subespacio de         ,
U = {(x, y, z, t)  :  x - 2y + z – 4 t = 0   y  x + y + 2z = 0}

Determine  W  subespacio de         tal que                      .

4ℜ

4ℜ WU4 ⊕=ℜ


