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Matrices y Sistemas de 
ecuaciones lineales
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Una matriz  A  con componentes en un cuerpo      es un 
arreglo en filas y columnas de elementos de      .  Por ejemplo,

Matrices:  definiciones y notaciones básicas

κ
κ

son matrices con componentes en      , el cuerpo de los 
números reales.   La matriz  A  tiene dos filas y tres columnas 
mientras que la matriz  B  tiene tres filas y dos columnas.

Si una matriz tiene m filas y n columnas, se dice que ella 
es de orden m x n (se lee m por n).
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¿Cómo denotar una
matriz de orden m x n?
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a. . . . .aa
. . .. . . . . .. . .

a. . . . .aa
a. . . . .aa

ASe usan dos índices: 

n  , . . . . 2, 1,  j  ; m, . . . . 2, 1,i  ),a(A ji ===
lo que abreviadamente se expresa,

Ejercicio: Determine por extensión la matriz A, de orden  
2x3  definida así,   a i j = | 2i – j |.
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El elemento      , es el que se ubica en la i-ésima fila j-ésima
columna de la matriz A;  se llama componente i j de la matriz A.  

Si la matriz A tiene el mismo número n de filas que de 
columnas, se dice que ella es una matriz cuadrada de orden n.

Si A es una matriz de orden n, las componentes        
constituyen la diagonal de A; se anota:iia

jia

 )a , . . . . . . .  ,a  ,a()A(diag nn2211=

La suma de los elementos de la diagonal de una matriz 
cuadrada de orden n   se llama  traza de A, es decir,

∑
=

=
n

1i
iia)A(tr
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Una matriz cuadrada se dice matriz diagonal 
si Por ejemplo,

)a(A ji=
j.i  cuando   0a ji ≠=

son matrices diagonales.

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
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
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
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By        
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A

son matrices triangulares.

Una matriz cuadrada se llama triangular 
superior si                 para i > j,  y se llama triangular inferior
si                   para i < j.    Por ejemplo,0a ji =

0a ji =
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
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Ejemplo: Determine por extensión la matriz              , de orden 
3 dada por

)a(A ji=









>−
<−
=

=
jisi|j3i|
jisiji2
jisii

A

¿Cuál es la diagonal y la traza de A  ¿Cuál es el valor de la traza 

de A  si la matriz  A  fuese de orden 20? ¿y si fuese de orden n?

Solución:  La matriz  A  es 

Su diagonal es   diag(A) = (1,  2,  3)  y  tr(A) = 6.   Si  A  es de 

orden 20, y si es de orden n,   210a)A(tr
20

1i
ii ==∑

=
2

)1n(n)A(tr +
=
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



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Resulta fácil comprender la utilidad que 
prestan las matrices para ordenar datos.

La producción semanal, en cientos, de los artículos p1, p2, ….p60
que se fabrican en una industria se pueden expresar mediante 
una matriz P de 60 filas - donde se escribirán los productos 
elaborados - y 5 columnas que indicarán los días de la semana 
de lunes a viernes: 

60

2

1

p
..
..

p
p

 

2,345,38,34
..........
..........
62,63,65,66
32,335,32

P


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





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Lu Ma Mi    Ju Vi
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Dos matrices  y                   son iguales si tienen el 
mismo orden y además 

)b(B ji=)a(A ji=
.ji  ,ba jiji ∀=

Si                  es una matriz de orden m x n, la transpuesta de A, 
denotada por        , es la matriz de orden n x m  que se obtiene al 
intercambiar las filas por las columnas de A.    En consecuencia,    

)a(A ji=
tA

)a(A ij
t =

El conjunto de todas las matrices de  m filas  y  n
columnas con componentes en el cuerpo      será 
denotado por                     y será  cuando 
se trate de matrices cuadradas de orden n. 

κ
)(Mmxn κ )(Mn κ
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Sea             matriz cuadrada.  Se dice que A es una matriz 
simétrica  si y  se  dice que  A  es antisimétrica si            

,  donde  -A  es la matriz              

)a(A ji=
AAt =

AAt −=

Por ejemplo, es una matriz simétrica.
















−
−

−
=

324
271
416

A

Construya usted una matriz antisimétrica de orden 3.      

Ejercicio: Si A es una matriz de orden n antisimétrica, 
demuestre que  diag(A) = (0, . . . . , 0)  y  tr (A) = 0.   

Ejercicio: ¿Cuál es la transpuesta de la matriz           de 
orden 3 x 2 definida por ? 2

ji ji3a −=
)a(A ji=

).a(A ji−=−
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Ejercicios:
1)   Determine por extensión la matriz          de orden 4 definida 
como sigue.  Calcule la traza de A.  ¿Es A una matriz 
simétrica? 

2)   Demuestre que toda matriz diagonal es simétrica.
3)   Determine todos los valores reales de a  y  b  de modo que 
la matriz  B  dada sea simétrica. 










−=+−
=−

=
casos  otrosen0

1jisi3ji
jisi7i
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2
















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+−

+
=

1b3
2b5a

36a2
B

3

2

)a(A ji=
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Operaciones con matrices

Se llama matriz nula (o matriz cero)  de orden m x n a  la matriz 
de orden m x n  que tiene todas sus componentes iguales a . 
La matriz nula se denotará por  Omxn o simplemente O.        

Suma de matrices

Si   , la suma de A  y  B  es la 
matriz                                         , donde   )(M)c(BA mxnji κ∈=+

)(M)(bB    ),a(A mxnjiji κ∈==
jijiji bac +=

Por ejemplo, si



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

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



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





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Observe que para sumar matrices, ellas deben ser del mismo 
orden.  Se tienen las siguientes propiedades:

1. (A+B)+C = A+(B+C),     

2. A+B = B+A ,    

3. Existe Omxn , matriz nula, tal que A+O = A , 

4. Para cada matriz                    , existe                  tal que    A+(-
A) = O ,  donde cuando

5. tr(A+B) = tr(A)  + tr(B), 

6. ,

7. A, B  diagonales           A+B diagonal

8. A, B  simétricas           A+B simétrica

9. A, B  antisimétricas A+B antisimétricas

)a(A ji−=− )a(A ji=

ttt BA)BA( +=+

⇒
⇒

⇒

)(MC B, ,A mxn κ∈∀

)(MB ,A mxn κ∈∀

)(MA mxn κ∈∀

)(MB ,A mxn κ∈∀

)(MB ,A n κ∈∀

)(MA mxn κ∈ )(MA mxn κ∈−

Ejercicio: Demuestre las propiedades enunciadas antes.   
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Multiplicación por escalar o ponderación

Si   y         , la multiplicación   veces 
A  es la matriz  de orden m x n,

)(M)a(A mxnji κ∈= ακ∈α
)a(A ji⋅α=α

Por ejemplo, si



















−

−
=

















−

−
=

3
20

3
4

3
1

2

4
51

A   entonces   , 
206
124
153

A

Se puede establecer que:

matrizA    O,A0     -A,(-1)A     A,A1    4.
)(MB A,  ,  B,AB)(A   3.

)(MB A,  , ,  A,A)A(   2.
 matrizA     ,  ,   )A,(A)(   .1

mxn

mxn

∀=⋅==⋅
κ∈∀κ∈α∀α+α=+α
κ∈∀κ∈βα∀β+α=β+α

∀κ∈βα∀αβ=βα
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Además

)(MA,AA)(    6.

)(MA  tr(A),A)    tr(5.

mxn
tt

n

κ∈∀⋅α=α

κ∈∀⋅α=α

Ejercicio: Resuelva la ecuación
tt

3
1t )X9B(A)AX(5 −−=+


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
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


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=

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


−
=








−

=
21
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Cy           
24
63

B   ,
05
12

A tsi

Las propiedades algebraicas de las 
matrices nos permiten resolver ecuaciones 
matriciales de manera eficiente.

Ejercicio: Demuestre las propiedades 1. a 6. anteriores. 
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Problema: Un fabricante produce tres modelos de 
zapatillas de descanso  A, B y C en tres tamaños: para 
niños, damas y caballeros.  La fabricación se realiza en 
dos plantas, una ubicada en San Bernardo y la otra en 
Maipú.  La producción semanal, en pares de zapatillas, en 
cada planta se entrega a través de las matrices:

322824C
482016B
303420A

VaronesDamasNiñosBdo.  San

282015C
321410B
262416A

VaronesDamasNiñosMaipú

a) Determine la matriz que contiene los datos relativos a la 
producción semanal total de cada modelo de zapatilla en ambas 
plantas.  

b) Si la producción en la planta de San Bernardo se incrementa en un 
20% y la de Maipú en un 40%, escriba la matriz que representa la
nueva producción semanal total de cada tipo de zapatilla.
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La multiplicación de matrices

Si   y                              ,  la multiplicación 
de A  y  B  es la matriz                     , de  orden m x r, donde)c(AB ji=

)(M)b(B nxrji κ∈=)(M)a(A mxnji κ∈=

∑
=

=
n

1k
jkkiji bac

El elemento ubicado en la fila i columna j del producto AB es:

njinj22ij11iji ba . . . . . babac +++=

Componentes 
de la fila i

Componentes 
de la columna j
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

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
−
−

=
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













−

−
=








−

−−
=

79
1615

AB      entonces

   ,
01
42
12

By       
113
528

APor ejemplo, si

Observe que en este ejemplo, BA también se puede realizar 
pero es una matriz de orden 3, con lo que concluimos que  

La multiplicación de matrices no es conmutativa   

Note también que para la matriz A del ejemplo anterior,  el 
producto no se puede efectuar.  AAA2 ⋅=
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¿Este producto 
tiene otras 

“curiosidades”?  

• Existen matrices cuadradas A, no nulas pero tales que

• Más aún, existen matrices A y B, de orden n, no nulas, 
distintas y  AB = O, es decir, el producto de dos matrices puede
ser la matriz cero y ninguna de ellas ser cero. 

OA2 =

Por lo tanto, /

/ C B       AC  AB
0)B    0(A       0AB

=⇒=
=∨=⇒=

Si, por ejemplo,
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Sin embargo, siempre que las operaciones se puedan realizar, 
se puede demostrar que:

1.   (A B) C  = A (B C)

2.   (A + B) C = A C + B C      y      C (A + B) = C A + CB 

)(MA    ,A IAIA nnn κ∈∀⋅==⋅

Surge la interrogante ¿Existe elemento identidad en 
el conjunto ? )(Mmxn κ

La matriz cuadrada                      de orden  n  definida así:

se llama matriz identidad; ella es tal que  

)a(I jin =





≠
=

=
ji   si0
ji   si1

a ji
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En consecuencia, existe elemento identidad en              .   )(Mn κ

Ejercicio: a)   Muestre con ejemplos que, en general,
ttt BA)AB(  que   y  )B(tr)A(tr)AB(tr ≠≠

b)  Demuestre que  tr(AB) = tr(BA) 

c)  Demuestre que, siempre que los productos se puedan 
realizar,   (A B)t = Bt At .  

Ejercicio: Determine la matriz X de modo que la siguiente 
igualdad resulte verdadera:
















−=

















1
6
5

X
22-1
1-10
3-23
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Dadas las matrices A y B, 
¿qué necesitamos para 

resolver la ecuación AX = B?

La ecuación  ax = b, en el conjunto de los números 
reales, se resuelve usando el inverso multiplicativo de a:  

a
b1bax == −

Si  A  es una matriz no nula nos preguntamos ¿existe una matriz 
B  tal que  AB = = BA?  Que equivale a ¿existe el inverso 
multiplicativo de A?  Observe que esta pregunta tiene sentido 
sólo si A es una matriz cuadrada.  Sin embargo, aunque A sea 
cuadrada, la respuesta a la interrogante es no siempre.  

nI
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Por ejemplo para  investiguemos la existencia 
de tal matriz B.  









=

21
63

A

Supongamos que es tal que  AB = I 2;  entonces    







=

dc
ba

B









=















10
01

  
dc
ba

21
63

que equivale a    







=








++
++

10
01

  
d2bc2a
d6b3c6a3

y a resolver .   02cay         2ca 3
1 =+=+

Concluimos que no existen a  y  c;  de manera análoga, no 
existen b  y  d.  Por lo tanto la matriz  B  no existe.

Surge entonces la siguiente definición:
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Se dice que una matriz                         es invertible 
o  no singular si  existe                       tal  que    AB 
=      = BA.   La matriz B, cuando existe, está 
únicamente determinada por A, se llama inversa 
de  A y  se denota por        .  

nI

1A−

Por lo tanto, AAIAA 1
n

1 ⋅==⋅ −−

)(MA n κ∈
)(MB n κ∈

Ejercicio: Demuestre que,

a)

b) 

c)         

invertible   )(MA   , A)A( n
11 κ∈∀=−−

invertible   )(MA   , )A()A( n
t11t κ∈∀= −−

  sinvertible   )(MB  A,   ; AB)BA( n
111 κ∈∀= −−−
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En lo que sigue, trataremos de contestar esta 
interrogante, es decir, caracterizaremos a las 
matrices invertibles.  Además mostraremos 
maneras de calcular la inversa.

Una primera respuesta la obtendremos a través 
de los determinantes que comenzaremos a 
estudiar a continuación.

¿Cuáles matrices 
son invertibles?
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Determinantes
Asociado  a  cada   matriz                           existe  un elemento 

de     , su determinante, que lo denotaremos   det(A)  o  | A | .

)(M
dc
ba

A 2 κ∈







=Si ,  det(A) = ad – bc ; por ejemplo, 

5712
37
14

=−=
−

−

Si A es una matriz cuadrada de orden mayor que 2, el 
determinante de A se define en forma recursiva como sigue:

Sea matriz de orden n.  Llamaremos menor de orden 
ij de A, y anotaremos        , al determinante de orden  n -1 que se 
obtiene a partir de A, eliminándole la i-ésima fila y la j-ésima
columna.   

)a(A ji=
jiM

)(MA n κ∈
κ
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El  cofactor de orden ij de A,  denotado         es el número

ji
ji

ji M)1(C +−=
jiC

Por ejemplo, si 

1Cy         2C                                     

1M    ,2M    , 
191
120
251

A

3213

3213

−==

==
















−−−

−
=

El  determinante de la matriz de orden n,     es el número)a(A ji=















≤≤=−

≤≤=−

=

∑ ∑

∑ ∑

= =

+

= =

+

fijo   ni1conCaMa)1(

fijo   nj1conCaMa)1(

)Adet(
n

1j

n

1j
jijijiji

ji

n

1i

n

1i
jijijiji

ji
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Por ejemplo, calculemos el determinante de

Fijando i = 1  tenemos que:  

 
742
502
931

A
















−
−

−
=

∑
=

+ =+−−=−−=−=
3

1j
312111j1j1

j1 40721220M9M3MMa)1()Adet(

• Observe que el fijar i = 1 significó que al 
desarrollar la sumatoria intervinieron los elementos 
y los correspondientes menores (o cofactores) de 
la fila 1.

• El determinante det(A) = 40  se pudo haber 
obtenido por seis caminos diferentes. ¿Cuál de 
ellos es el que necesita menos cálculos?
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1. det(A) = det(At ). En consecuencia, las propiedades de los 
determinantes demostradas para las filas, son también 
válidas para las columnas.  Y recíprocamente.

2. Si todos los elementos de una fila (o columna) de la matriz A 
son cero, det(A) = 0.

3. det(     ) = 1,              .  En efecto,  es claro que det(I2 ) = 1.  
Supongamos que det(   ) = 1, para              .    Entonces,

De la definición dada para los determinantes 
siguen las siguientes propiedades:

nI INn∈∀
INk∈kI

∑
+

=

+
+ =⋅⋅−=−=

1n

1j
k

2
j1j1

j1
1k 1)Idet(1)1(Ma)1()Idet(
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Del mismo modo, usando un razonamiento inductivo, 
podemos establecer que

4. Si A es una matriz diagonal o triangular, det(A) es igual al 
producto de los elementos de la diagonal.

5. Si  dos filas (o columnas) adyacentes de A son iguales, 
entonces det(A) = 0.

Esta propiedad nos permite demostrar que:

6. Si dos filas adyacentes o columnas adyacentes de A se 
intercambian, se produce un cambio de signo del 
determinante.
Lo que nos permite ampliar la propiedad 5:

7.  Si dos filas (o columnas) de  A  son iguales,  entonces  det(A) 
es igual a  0.



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 31

¿Qué sucede con el 
determinante de A+B?

)Bdet()Adet()BAdet( +≠+En general,  

Sin embargo, existe una propiedad que la enunciaremos en 
primer lugar para uno de los casos de orden 2.

dc
bc

    
da
ba

dca
bca

2

1

2

1

22

11 +=
+
+

8.   Si                      y                            denota la k-ésima columna   
de A,  entonces

)A , . . . ,A, . . . ,Adet()A , . . . ,A, . . . ,Adet(

)A , . . . ,AA, . . . ,Adet(
(n))k(

2
)1((n))k(

1
)1(

(n))k(
2

)k(
1

)1(

+

=+

)(MA n κ∈ n,k1  ,A )k( ≤≤
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10. Si  A  y  B  son matrices de orden n, se puede demostrar que 
det (A B) = det(A) det(B)

11.  Finalmente una propiedad que será de mucha utilidad:  

Respecto a la ponderación, en general,

Pero, utilizando la notación de la propiedad 8, se tiene que
)Adet()Adet( ⋅α≠α

)Adet()Adet( n ⋅α=α

)A , . . . ,A, . . . ,A(etd )A , . . . ,A, . . . ,Adet( (n))k()1((n))k()1( α=α9.     

Y como consecuencia,

Si las componentes de una fila (o columna) de A se 
multiplican por un número            y los resultados se suman a
los elementos correspondientes de otra fila (o columna), el 
valor del determinante no se altera.  Es decir,  

κ∈α

)A(etd )A , . . . ,AA , . . . ,A, . . . ,Adet( (n))k((j))k()1( =α+
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Si la fila i multiplicada por el número       la sumamos a     
la fila j,  anotaremos               .       ji FF +α

α

19 
98
13

   
980
130
251

 
1124
372
251

==
−−

=
−

−−
−−

¿Cómo utilizar la 
propiedad 11 

anterior?

Para calcular el siguiente determinante usaremos la operación
; a continuación la operación           y luego 

desarrollaremos el determinante a través de la primera columna:
21 FF2 +− 31 FF4 +−
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Ejercicio: Clasifique las siguientes 
afirmaciones como verdaderas o falsas:

)(MA   det(A), -  det(-A)     3.

0    tr(A)    )Idet()Adet()IAdet(     .2
)(MB A,    , )BAdet()BAdet()BAdet(     .1

n

22

n
22

κ∈∀=

=⇔+=+
κ∈∀−⋅+=−

Ejercicio: Calcule los siguientes determinantes:

2

2

2

cc1
bb1
aa1

    , 
2x66

15x7
113x

    , 
dda1
cca1
bba1

    , 
741
114
532

+−
−
−+

+
+
+

−−−
−

−
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Definición:  La matriz adjunta de , es la 
transpuesta de la matriz de los cofactores de A , es decir,   

)(M)a(A nji κ∈=

)C()C()M)1(()A(adj i j
t

ji
t

ji
ji ==−= +

Por ejemplo, si 







=ℜ∈








=

ac-
b-d

adj(A)   , M
dc
ba

A )(2

¿Cuál es la matriz adjunta de ?   La matriz de los  
101
653
012

A















−

−
=

cofactores de A es ; luego 
6126
121
595

















−−
−
−

 
615

1229
615

)A(adj
















−−
−
−

=
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Observe que si  

 
bc-ad0

0bc-ad
dc
ba

 
ac-
b-d

 A)A(adj    y

bc-ad0
0bc-ad

ac-
b-d

 
dc
ba

adj(A)A









=
















=⋅









=
















=⋅

  , )(M
dc
ba

A 2 ℜ∈







=

Aadj(A) 
det(A)

1I  adj(A) 
det(A)

1A 2 ⋅







==








⋅

Y si el determinante de A es distinto de cero tenemos que,  
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Aadj(A) I  adj(A) A AnA ⋅




==





⋅ )det(

1
)det(

1

Este resultado es más general; se puede demostrar que si        
y  det(A) es distinto de cero,  entonces

es decir,  A es invertible y se tiene que  







= adj(A) 

det(A)
1A 1-

Recíprocamente, si  A es invertible, entonces  

)Adet()Adet()AAdet()det(I  1 11
n

−− ⋅=⋅==

y  por lo tanto,

Por lo tanto,  podemos enunciar el siguiente teorema que 
caracteriza a las matrices invertibles:

)(MA n κ∈

0.det(A) ≠
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Teorema: Sea ; entonces   

A  invertible

Y en este caso se tiene que                 

)(MA n κ∈
0)Adet(    ≠⇔






= adj(A) A A

1-
)det(

1









−

=

≠ℜ∈







=

ac-
b-d

bcad
A           

 entonces    0,bc-ady     , M
dc
ba

A

1- 1

)(2Por ejemplo, si 

Ejercicio: Calcule la inversa de las siguientes matrices:

















−−
−

−
=
















−
−

=







−−

=
423
312
151

C     , 
121
613
412

B    , 
32
95

A
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Ejercicio: Es verdadero o falso que para 
matrices A, B invertibles de orden n se tiene que:

A)(A     4.

    AB(AB)     .3

BA)BA(     .2

 
)Adet(

1)Adet(     .1

11-

111-

111

1

=

=

+=+

=

−

−−

−−−

−

Ejercicio: Determine todos los valores reales de k de modo 
que las siguientes matrices sean invertibles:



















=
















−
−=








−−
+

=

k001
1k11
11k1
100k

C     , 
2k13
k202

11k
B    , 

kk1
k1k

A
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Operaciones elementales – Matrices escalonadas

Para una matriz consideraremos las siguientes 
“operaciones elementales con las filas de A”:

• Permutar dos filas:  Si se permuta la fila i con la fila j anotamos

• Multiplicar una fila por un número real:  Si se multiplica la fila i    
por el número            , esta operación se anota

• Sumar dos filas:  Si la fila i se suma a la fila j, anotamos

• Finalmente, podemos combinar las dos últimas operaciones y   
obtener   ji FF +α

ji FF +

iFα

jiF

0≠α

)(MA mxn κ∈
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Ejercicio: Verifique que si se realizan las operaciones 
elementales indicadas con las filas de la matriz A, se obtiene 
la matriz E.

 
00
10
41

E    ,F2F   ,F   ,FF   ,F2F-   ,F   , 
31
41
62

A 3232312121















=+++

















−−
=

Si                             y si  B  se obtiene realizándole a la matriz A un 
número finito de operaciones elementales, entonces se dice que A 
es equivalente a B  y se anota . Por ejemplo, las matrices 
A  y  E  del ejercicio anterior son equivalentes. 

La matriz E del ejercicio anterior tiene una forma muy particular, es 
una matriz del tipo escalonada.  A continuación damos una 
definición de matriz escalonada: 

BA ≈

)(MB  ,A mxn κ∈
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Una matriz se llama matriz escalonada si 
satisface las siguientes condiciones:

• Las filas que tengan todas sus componentes iguales a cero deben 
estar ubicadas debajo de aquellas que tengan componentes no 
nulas.

• La primera componente no nula de cada fila no nula es 1, vista de 
izquierda a derecha. Esta componente se llama “uno distinguido o
uno capital”.

• El número de ceros al comienzo de una fila aumenta a medida 
que se desciende en la matriz.

Si además A satisface lo siguiente: 

• Todas las componentes de la columna donde aparece un 1 
distinguido son ceros, 

la matriz A se llama escalonada reducida por filas.

)(MA mxn κ∈
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Ejercicio: Decida si las siguientes matrices son 
o no son escalonadas. ¿Son escalonadas 
reducidas por filas?

















−
−=















 −
=















 −
=

2110
4100
0051

C     , 
100
010
012

B    , 
00
20
11

A

Teorema: Toda matriz                     es equivalente a una 
matriz                          del tipo escalonada reducida por filas.             

Si                    , entonces            , con E matriz escalonada 
reducida por filas.   Se define el rango de A como el número de 
filas no nulas de E, que equivale al número de “unos distinguidos” 
de E.  El rango de  A  lo denotaremos por r(A).              

EA ≈

)(MA mxn κ∈
)(ME mxn κ∈

)(MA mxn κ∈
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El rango de la matriz nula es cero:  r(O) = 0.
El rango de la matriz identidad de orden n es n: 

El rango de la matriz es 2.  ¿Por qué? 

nIr n =)(

















−

−−
=

3123
5011
4264

A

Ejercicio: Determine todos los valores reales de a de modo 
que el rango de la matriz M sea 3 si  

 
a43
132
a21

M
2 














=

Ejercicio: Estudie el rango de la matriz A, dependiendo de 
los  valores reales de k si  

















−−
+
−

=
2341

011k1
1011

A
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Teorema: Sea ; entonces   

A  invertible                 nA(r    =⇔ )

Un teorema que caracteriza a las matrices invertibles es:  

nIA    ≈⇔

Ejercicio: Aplique la última parte del teorema para calcular 
la inversa de cada una de las siguientes matrices:  

















−−
=

















−−
=








−−

=
21k
113
332

C     , 
213
142
131

B    , 
31

125
A

)(MA n κ∈

Y si una sucesión de operaciones elementales fila reducen  A  a la 
matriz identidad     , entonces esa misma sucesión de operaciones 
elementales fila cuando se aplican a          proporcionan      .

nI
nI 1A −
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Las operaciones elementales también se pueden 
realizar con las columnas de la matriz. 

Sin embargo, para los objetivos de este curso, 
usaremos sólo operaciones elementales con las 
filas de la matriz.  

Ejercicio: Determine el rango de la siguiente matriz 
compleja:  

















+−+++−
+++=

i1i1i1i1
i4i211i2

3i3i1
A
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Matrices elementales 
Una matriz elemental es aquella que se obtiene al realizar una 
operación elemental a la matriz identidad

Usaremos las siguientes notaciones para las matrices 
elementales:  

njij i

n    ii

n    j ij i

I   a   FF  realizar    al  obtiene  se   :  )(E
I   aF  realizar    al  obtiene  se   :   )(E

I   aF  realizar    al  obtiene  se   :       E

+αα
αα

Por ejemplo, para orden 3, 
















=
















=

104
010
001

)4(E          , 
010
100
001

E 3 13 2

.I n
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Observaciones
(1)  Existe una equivalencia entre realizar a la matriz A una 
operación elemental fila y multiplicar, por la izquierda, la matriz A 
por una matriz elemental.  A  saber,  

A )(E
A  )(E

AE

j i

i

j i

⋅α
⋅α

⋅ corresponde a realizar a  A  la operación elemental

“                      “                         “        “

“                      “                         “        “ ji

i

j i

FF
F 

F

+α
α

(2) Las matrices elementales son invertibles; en efecto,  

nij i

n
1

ii

nj ij i

I)(E )(E
I)(E  )(E

IEE

=α−⋅α

=⋅α

=⋅

α
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(3) La inversa de una matriz elemental es también una matriz 
elemental.  

Ahora estamos en condiciones de demostrar el 
teorema enunciado antes y que caracteriza a las 
matrices invertibles. 

Teorema: Sea ; entonces   
A  invertible                 

)(MA n κ∈

nIA    ≈⇔

i)  Supongamos que  A  es invertible y que           , con E  matriz 
escalonada reducida por filas,             .   Entonces  E  tiene por lo 
menos una fila de ceros y por tanto  det( E) = 0.  
Pero si           , el determinante de A  difiere del determinante de 
E en el signo o en un factor numérico.  En cualquier caso 
concluimos que  det(A) = 0, lo que es una contradicción.  Por lo 
tanto se debe tener              .   

EA ≈

nIE ≠

EA ≈

nIA ≈
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i)  Supongamos que            ; entonces      se obtiene realizando  
una sucesión de operaciones elementales fila a la matriz A.   Esto 
quiere decir que    Ek Ek-1 . . . . E2 E1 A = In , con E1, . . . Ek
matrices elementales.   Como las matrices elementales son 
invertibles podemos expresar    

nIA ≈ nI

invertibleA     
0det(A)  

)det(E . . . . )det(Edet(A)  

E . . . . EEA   
1-

k
1-

1

-1
k

1
2

1
1

⇒
≠⇒

⋅⋅=⇒

⋅⋅⋅= −−

Del teorema siguen los siguientes corolarios: 

(1) A  invertible                 )(MA n κ∈ nA(r    =⇔ )
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(2)                 ,  A  invertible               A es producto de 
matrices elementales.                

)(MA n κ∈ ⇔

Esto último sugiere otro método para calcular la inversa de A:

12k
-1

n12k EE . . . . . EA       IA EE  . . . . . E ⋅⋅⋅=⇒=⋅⋅⋅⋅

Además, prueba el enunciado hecho antes:  Si una sucesión de 
operaciones elementales fila reducen  A  a la matriz identidad  , 
entonces esa misma sucesión de operaciones elementales fila 
cuando se aplican a          proporcionan         .nI

nI

1A −

Ejercicio: Exprese la inversa de la matriz 
como producto de matrices elementales.  

 
31
82

A 







−
−

=
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Factorización LU 
Sea .   Si al escalonar  A  no es necesario realizar 
permutación de filas, entonces  A  puede factorizarse como el 
producto LU donde:
• L   es una matriz triangular inferior con todos los elementos de 
su diagonal  iguales a 1.
• U   es una matriz triangular superior con los elementos pivotes 
en la diagonal.

)(MA n κ∈

No toda matriz admite 
factorización LU
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Lo que es una contradicción pues  det(A) = -1.

Por ejemplo,                     no admite factorización LU.   En 
efecto,  

 
01
10

A 







=

invertible  noA                                         
invertible  no        Uo    L                                      
0)     x     0  (a                                      

0 ax                                       
dzcycx

ayax
  

01
10

          
z0
yx

 
dc
0a

A

⇒
⇒

=∨=⇒
=⇒









+

=







⇒
















=

Este ejemplo muestra que,

A    invertible     /      A  admite factorización LU ⇒
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Ejemplo: Encontremos la factorización LU de la matriz

 
021
110
111

A















=

 U  
200

110
111

                
110

110
111

                
021
110
111

A =
















−
≈

















−
≈
















=

31 FF +− 32 FF +−

Lo anterior se expresa con matrices elementales así:

U)1(E)1(E  A                      
U))1(E())1(E(  A                      

  U A)1(E)1(E

3 23 1

1
3 1

1
3 2

3 13 2

⋅⋅=⇒
⋅−⋅−=⇒

=⋅−⋅−
−−

A    =       L            U
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Efectivamente,

















−














=
















=

200
110
111

 
111
010
001

 
021
110
111

A

De lo realizado se puede concluir que la factorización LU  
de una matriz  A  no es única.

Ejercicio: Encuentre una descomposición LU para las 
matrices  A  y  B  siguientes.  

 
021
203
121

A
















−

−
=  

1321
2113
1112
3011

B



















−−
−−
−

=
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Un sistema de m ecuaciones lineales con n incógnitas se expresa

Sistemas de m ecuaciones lineales 
con n incógnitas

 )(M)a(A mnji ℜ∈=donde es la matriz de los coeficientes del 

sistema y son las (matrices) columnas 

de incógnitas y de términos constantes respectivamente. 











=+++

=+++
=+++

mnmn22m11m

2n2n222121

1n1n212111

bxa . . . . . xaxa
.... . . . . . . .
bxa . . . . . xaxa
bxa . . . . . xaxa

(*)



















=



















=

m

2

1

n

2

1

b
....
b
b

B     , 

x
....
x
x

X
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Los números reales , formalmente

que satisfacen cada una de las ecuaciones de (*) forman una 
solución del sistema (*).  

El sistema (*) se dice compatible si posee al menos una 
solución y se dice incompatible cuando no tiene solución. 

) x, . . . . . ,  x,x( n21
 

x
....
x
x

n

2

1



















Observe que el sistema (*) equivale a la 
ecuación matricial  AX = B, con  A  la 
matriz de orden m x n formada con los 
coeficientes del sistema, X la matriz 
columna de incógnitas y B la matriz 
columna de términos constantes.
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Ejercicio: Escriba la ecuación matricial AX = B que 
representa a los sistemas:





=+++
=+−−









=+−
=−+

−=+−

0x9x4x3x
0x2x2xx

              
6x3x2x5
0x3x4x
1x7 xx2

4321

4321

321

321

321

Ejercicio: Escriba el  sistema  de  ecuaciones  lineales  
AX = B que corresponde a las matrices:
















=








−

=
















=

















−
−−
−

=

10
6-
1

B     , 
701
254

A

3
4-
2

B    , 
116
151
302

A
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Problema: Haga el planteamiento matemático del 
siguiente problema:  Un empresario tiene tres máquinas 
que son empleadas en la fabricación de cuatro productos 
diferentes.  Para utilizar plenamente las máquinas, estas 
estarán en operación 8 horas diarias.  El número de horas 
que cada máquina es usada en la producción de una unidad 
de cada uno de los cuatro productos está dado en la tabla.

0321Máq 3
1102Máq 2
2121Máq 1

Prod 4Prod 3Prod 2Prod 1

¿Cuántas unidades de cada producto se deben 
producir en un día, con el fin de usar 
plenamente las máquinas?
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Sistemas de ecuaciones lineales 
homogéneos

Un sistema de ecuaciones lineales se dice homogéneo cuando   
la columna de términos constantes está formada sólo por ceros.

Sea  AX = O,  con                     un  sistema  homogéneo; 
entonces:

1. AX = O  es siempre compatible pues  X = O es solución de él.

2. Si                        es  tal  que              , entonces los sistemas 
(equivalentes)  AX = O  y  EX = O  tienen las mismas soluciones.

3. Si el rango de A,  r(A) = n,  entonces  X = O es la única solución 
de  AX = O.

4. Si el rango de A,  r(A) < n,  entonces existen infinitas soluciones 
para AX = O.  Estas se pueden expresar en términos de uno o 
más parámetros.   

)(MA mn ℜ∈

)(ME mn ℜ∈ EA ≈
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Resolución de sistemas homogéneos 

  
0xx7x3
0x3x2x2
0xxx

321

321

321

=−+
=+−
=−+ La matriz de este sistema es:

Con A, realizamos operaciones elementales fila  hasta obtener E

 
173
322
111

A
















−
−

−
=

E
100
010
001

700
10
01

240
54-0
1-11

 
173
322
111

A 2
1

2
3

=















≈

















≈















≈

















−
−

−
=

−

Como r(A) = 3 = N° columnas de A = N° de incógnitas, el sistema 
tiene solución única y ésta es la misma que tiene EX = O, es decir, 

 
0
0
0

S















= , que nos permitimos escribir  S = (0, 0, 0)

Ejemplo 1
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0x15x7x1
0x6x4x2
0x3xx

321

321

321

=+−−
=+−
=−+Ejemplo 2:

E
000
210
101

126-0
126-0

3-11
 

1571
642
311

A =















−
−

≈















≈

















−−
−

−
=

En este caso:

Como r(A) = 2 < N° columnas de A (N° de incógnitas), el sistema 
tiene infinitas soluciones.  Estas las buscamos en el sistema EX = O:

      
2xx
xx

         
0x2x
0xx

32

31

32

31
=
=

⇔
=−
=−

Asignamos a       el parámetro     con el fin de expresar las infinitas 
soluciones así:

.  ;  
1
2
1

  2S ℜ∈λλ















=

















λ
λ
λ

=

3x λ

ℜ∈λO también,  S = (1, 2, 1)    ,   λ
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Ejemplo 3:  Resolvamos el sistema de 4 incógnitas:
  

0z7y3x2
0u5z4yx

 
=−+
=++−

E
2310
3101

101550
5411

 
0732
5411

A =







−−

≈







−−

−
≈








−

−
=

En este caso, r(A) = 2 < N° columnas de A (N° de incógnitas) y el 
sistema tiene infinitas soluciones. El sistema equivalente EX = O 
es:

      
2u3zy
3u-z-x

         
0u2z3y
0u3zx

+=
=

⇔
=−−
=++

Asignamos dos parámetros: . Las infinitas soluciones 
se expresan:

.  ,   ;  

1
0
2
3-

   

0
1
3
1

S ℜ∈µλµ



















+λ

















−

=

ℜ∈µλµ−+λ−=  ,  ;1) 0, 2, ,3(0) 1, 3, ,1(S

µ=λ=  u  , z

O también,    
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Ejemplo 4:  Determinemos todos los valores de k  de modo 
que el siguiente sistema tenga soluciones distintas de X=O, 
es decir, soluciones no triviales.   

  
0x)1k(x
0x6x4x2
0x3xx5

32

321

321

=−+
=++−
=+−

E
3k00

210
101

1-k10
1890

3-2-1
 

1k10
642
315

A =
















−
≈
















≈

















−
−

−
=

El sistema tendrá soluciones no triviales si y sólo si r(A) < 3 = N°
columnas de A (N° de incógnitas del sistema).

Por lo tanto el valor de k buscado es k = 3, en cuyo caso las múltiples 
soluciones del sistema se pueden expresar:

ℜ∈λλ−    ; 1)  2,-  ,1(
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0xx7x3
0kxx4x2
0xxx

 

321

321

321

=−+
=+−
=−+

Ejercicio: Determine todos los valores reales de k de 
modo que el siguiente sistema tenga soluciones no triviales:

Ejercicio: ¿Para qué valores del número 
real  a, el sistema AX = O  tiene solución 
única?  Aquí A es la matriz:

 
0a4
aa3
111

A














 −
=
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Sistemas de ecuaciones lineales no homogéneos

)(M)a(A mnji ℜ∈=

Consideremos el sistema no homogéneo AX 
= B,   de  m  ecuaciones lineales con  n  
incógnitas, donde   y  

)(),,( 1 ℜ∈= mx1
t

m2 Mb , . . . . . b  bB

Llamaremos matriz ampliada (o matriz aumentada) del 
sistema AX = B  a:



















=

mmn2m1m

2n22221

1n11211

ba....aa
....................
ba....aa
ba....aa

A
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El sistema  AX = B  es compatible si y sólo si  r(A) = r(A; B) 

O equivalente, 
El sistema AX = B es incompatible si y sólo si r(A)     r(A; B).≠

Se tiene que:

Supongamos que AX = B, sistema de m ecuaciones lineales 
con n incógnitas, es compatible. 

1. Si   r(A) = r(A; B) = n,  entonces  AX = B  tiene solución única.

2. Si  r(A) = r(A; B) < n,  entonces AX = B  tiene infinitas 
soluciones que se pueden expresar en términos de uno o 
más parámetros.   
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Si el sistema  AX = B tiene n ecuaciones y n 
incógnitas,  A es una matriz cuadrada de 
orden n.   Y si el rango de A, r(A) = n,  
entonces r(A; B) también es n,  A es invertible 
y la única solución del sistema la podemos 
encontrar a través de la inversa de A:  

BAX 1−=
Ejercicio: En las condiciones anteriores, ¿por qué              

no  es   solución  del sistema?1−= BAX

  
2x4x4x2

0x5x6x3
9x2xx

321

321

321

−=−+
=−+
=++

Ejercicio: Usando la inversa de la matriz del sistema, 
resuelva
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Resolución de sistemas no homogéneos 
Ejemplo 1:  

  
1zy6x3
3z3y4x

 
=−+

−=−+











≈








−

−−
≈








−

−−
= −−

3
5

3
4

3
11

3
7

10
01

10860
3341

 
1163
3341

B) ;A(

En este caso, r(A) = 2 = r(A; B) y el sistema es compatible.  Como 
n = N° de incógnitas = 3,  el sistema tiene infinitas soluciones; las 
buscamos en:

  
zy
zx

 
3

5
3

4
3

11
3

7

−=−
=+

ℜ∈λ+λ−    ; 0)  ,  ,(   1)  ,  ,( 3
-5

3
11

3
4

3
7Soluciones:
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Ejemplo 2:   Estudiemos la compatibilidad del sistema 

  
cxx5
bxxx2
axx2x

 

32

321

321

=−
=++
=+−

















+−
−−

−
≈

















−
−−

−
≈

















−

−
=

cba2000
a2b150

a121

c150
a2b150

a121
 

c150
b112
a121

B) ;A(

Por lo tanto, el rango de A es 2.
El sistema será compatible si y sólo si 

r(A; B) = 2, 
lo que equivale a que a, b, c deben cumplir,

2a – b + c = 0 
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Ejemplo 3:   Determinemos los valores reales de m de 
manera que el sistema:

i) Tenga solución única
ii) Posea múltiples soluciones
iii) Sea incompatible

  
1mxxx

2xmx
1x2x2x

 

321

32

321

−=++
=+
=++

















−−
−

−−
≈

≈
















−−−
≈

















−
=

)m1(2)1m(00
2m210
32m201

          

22m10
21m0
1221

 
1m11
21m0
1221

B) ;A(

2
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i) Para cualquier número real  m,  m     1, r(A) = 3 = r(A; B)  y el 
sistema tiene solución única.  En este caso, 

≠

ii) Si  m = 1, , r(A) = 2 = r(A; B)  y el 

sistema tiene múltiples soluciones que se expresan: 



















≈
















−−
−

−−
≈

−
−
−

1
2
1

2

2 100

010
1001

)1(2)1(00
2210
3)1(201

;(

m

m 
mm

m
m

B) A

Y la solución es: ( ) 1 m   ,   ,   ,1S 1-m
2-

1-m
2 ≠=

 B) A














 −
≈

0000
2110
3001

;(

ℜ∈λ+λ    ; 0)  2,  (-3,   1)  1,-  ,0(

iii)   Para ningún número real  m,  el sistema es incompatible. 



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 73

Ejercicio: Analice las soluciones del sistema 

dependiendo de los valores que tome el número 
real a. 

  
1xxxax
2xxaxx
1xaxxx

 

4321

4321

4321

=+++
=+++
=+++

Ejercicio: Resuelva el sistema  

Para todos los valores reales de k para los cuales existen 
múltiples soluciones.
¿Para algún valor de k, el sistema resulta ser incompatible?  

  
kkxkxx
kkxkxx

xxx
 

=−+
=++
=++

321

321

321
2
12
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Problema: Una persona invierte 
US$20.000  en tres diferentes negocios 
que proporcionan utilidades del 5%, 6% 
y 8% respectivamente.  

La ganancia anual total de las tres 
inversiones es US$1.266.  

Determine la cantidad depositada en 
cada negocio si se sabe que la utilidad 
del negocio al 8% es igual a dos veces la 
ganancia que deja el negocio al 5%. 

Determine la cantidad depositada en cada negocio si se 
sabe que la utilidad del negocio al 8% es igual a dos veces la 
ganancia que deja el negocio al 5%. 
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La Regla de Cramer
La Regla de Cramer nos proporciona un método para 

resolver ciertos sistemas de n ecuaciones lineales con n 
incógnitas.

Sea  A  matriz de orden n  y  consideremos el sistema de 
ecuaciones lineales  AX = B.   Si  det (A)      0,  entonces A es 
invertible y la única solución del sistema es                   .

La Regla de Cramer nos entrega otra manera de hallar esta 
única solución de AX = B a través de los determinantes; 
asegura que,  

≠
BAX 1−=

n , . . . . . 2,  1,  i   , x i
i =

∆
∆

=

donde                      y          es el determinante de la matriz que 
se obtiene al sustituir la i-ésima columna de A por la columna 
B de términos constantes. 

)Adet(=∆ i∆
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Ejemplo:  Resolvamos el sistema

para todos los valores de m que hacen que este sistema 
tenga solución única.

  
mxxx
xmx

xxx
 

1
2
122

321

32

321

−=++
=+
=++

2)1m(
m11
1m0
221

−==∆En este caso

Luego                                                      y  el sistema  tiene 
solución única.  Calculemos la solución: 

0  det(A)  , }1{m ≠=∆−ℜ∈∀
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1
)1m(
)1m(

)1m(

m11
1m2
221

x 2

2

2
1

1 =
−

−
=

−

−
=

∆
∆

=

1m
2

)1m(
)1m(2

)1m(

m11
120
211

x 22
2

2 −
=

−

−
=

−

−
=

∆
∆

=

1m
2

)1m(
)1m(2

)1m(

111
2m0
121

x 22
3

3 −
−

=
−

−−
=

−

−
=

∆
∆

=

Solución: ( ) 1 m   ,   ,   ,1S 1-m
2-

1-m
2 ≠=
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Problema: Suponga que dos productos A  y  B  compiten y 
que las demandas                      de estos productos están 
relacionadas con sus precios                    por las ecuaciones 
de demanda:

Las ecuaciones de la oferta son:

que indican los precios a los cuales las cantidades             
estarán disponibles en el mercado.  En el punto de equilibrio 
del mercado las cuatro ecuaciones deben satisfacerse.  
Calcule los valores de equilibrio de    

 Q  y  Q BA
 p  y  p BA

B2
1

AB

B2
1

AA

p3p-207 Q

, p2p-17Q

+=

+=

B4
1

A2
1

B

B3
1

AA

QQ2 p

, QQ2p

++=

++=

 .p     yp  ,Q  ,Q BABA
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Sistemas lineales y factorización LU
Consideremos el sistema  AX = B,   donde  A  es una matriz de 
orden  n  que admite una descomposición  LU.   Si  AX = B  tiene
solución única, ésta se puede obtener de la manera que se indica
a continuación:  

AX = B              LU X = B              LY = B,   con  Y = UX⇔ ⇔

Ejemplo:  Resolvamos el sistema

7xx2x4x2
1xx4x3

4xx2xx
2xxx2x

4321

321

4321

4321

=+++
−=−+

=−+−−
−=+−+
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La matriz  A  del sistema admite una factorización LU así: 



















−

−

×



















−
−

=



















−
−−−

−

=

2000
3400
0110
1121

1102
0123
0011
0001

1242
0143
1211
1121

A

L U
Resolvemos  LY = B,    

7yyy2
1yy2y3

4yy
2y

431

321

21

1

=++
−=+−

=+−
−=



















=⇒

2
9
2
2-

    Y
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Finalmente, resolvemos  U X = Y,    

2x2
9x3x4
2xx
2xxx2x

4

43

32

4321

=
=−
=+

−=+−+



















=⇒

1
3
1-
2

X    

Solución del sistema    
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Espacios vectoriales 
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En el estudio de las matrices y, en 
particular, de los sistemas de ecuaciones 
lineales realizamos sumas y multiplicación por 
escalares con un tipo especial de matrices, las 
de orden nx1.

Abusando del lenguaje y la notación establecimos la 
correspondencia:

)x, . . . . , x,(x                      

x

x
x

n21

n

.

.

.

.

2

1






















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Es decir, aceptamos que                             ,  con el fin de 
aprovechar la familiaridad que se tiene  con  los espacios 

En este capítulo estudiaremos conjuntos que 
poseen propiedades algebraicas similares a

n
1nx       )(M ℜ≅ℜ

.  y  32 ℜℜ

.nℜ

A dichos conjuntos se les dará el nombre de 
espacios vectoriales y a sus elementos el 
nombre de vectores.

En lo que sigue      designará al cuerpo      de los números 
reales o al cuerpo  C de los números complejos. 

ℜκ
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Un espacio vectorial sobre el cuerpo      es un conjunto 
de objetos  V  con dos operaciones:

(1) + : V x V                      V  ;   (u, v)                  u + v
que es asociativa, conmutativa, posee elemento neutro         

(cero) y cada elemento posee un inverso.
(2)   p:      x V                      V  ;   (   , v)                

que satisface lo siguiente: 

Espacios y subespacios vectoriales 

v⋅αα

 V,vv;v1    )iv
Vv,u;v;u)v(u   )iii
Vv;,;vvv)()ii

Vv;,;v)()v()i

∈∀=⋅
∈∀κ∈α∀α+α=+α
∈∀κ∈βα∀β+α=β+α

∈∀κ∈βα∀αβ=βα

κ

κ

con  1  elemento unidad de  κ
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Los  elementos  de  V  se llaman  vectores y los de      
escalares.   Si                ,  se  dice  que  V  es  un   espacio 
vectorial real.   Si        =  C ,  el espacio vectorial  V  se dice 
complejo.  

En cualquier espacio vectorial  V  sobre       se tiene que:  

Vvv,v(-1)    )d
)0v0(0v    )c

,00)b
Vv,0v0)a

∈∀−=⋅
=∨=α⇒=⋅α

κ∈α∀=⋅α
∈∀=⋅

La operación (1) es interna en V; se llama suma 
o adición.  La operación (2) es externa y se llama 
multiplicación por escalar o ponderación.

κ
κ ℜ=

κ

κ
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Ejemplos de espacios vectoriales  

} n , . . . . 1,i  ,  /  x) x, . . . . . ,x({ in1
n =∀ℜ∈=ℜ

(1)     Para  n número natural,  sea 
(n veces), es decir,     

ℜ××ℜ=ℜ . . . .n

nℜ

ℜ∈ααα=α

++=+

,)x , . . . . ,x() x, . . . . ,x(                  
)a x, . . . . ,ax()a , . . . . ,a() x, . . . . ,x(

n1n1

nn11n1n1

con las operaciones siguientes:  

es  un espacio vectorial real.

En consecuencia,     es un espacio vectorial 
sobre sí mismo.

ℜ
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El espacio vectorial real  2ℜ
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El espacio vectorial real  3ℜ
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Suma en   3ℜ
3ℜPonderación  en   
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(2) No sólo       es un espacio vectorial sobre     . Si  IK es 
un cuerpo, IK  es un espacio vectorial sobre si mismo.  En 
este caso, la ponderación coincide con la multiplicación 
del cuerpo IK.  En consecuencia, C (números complejos) 
es un espacio vectorial complejo. Pero  C también es un 
espacio vectorial real si se considera la ponderación:  

(3) Para               , el conjunto               de las matrices
reales de orden mxn, con las operaciones suma y 
multiplicación habituales de las matrices, es un espacio 
vectorial real.  

(4) El conjunto         de los polinomios en x con coeficientes 
reales, con las operaciones suma y ponderación usuales, 
es un espacio vectorial sobre     .

INn ,m ∈

ℜ

ℜ

ℜ

ℜ∈αα+α=+α    , bia)bia(

)(Mmxn ℜ

]x[ℜ
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(6) Si            , el conjunto
con la suma y ponderación usuales de las funciones, es   

un espacio vectorial sobre     .

}, función  /  A:f{),A(F ℜ→=ℜ

(5) Para n número natural, denotemos por
 } n  grado  de  p(x)  /  [x])x(p{]x[Pn ≤ℜ∈=

, con las operaciones suma y multiplicación por 
escalares reales, es un espacio vectorial real.

]x[Pn

ℜ⊆A

ℜ

¿Cuál es el elemento cero de los 
siguientes espacios vectoriales reales?          

,nℜ )(Mmxn ℜ    y]x[P  , n ),A(F ℜ
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Los siguientes conjuntos, con las operaciones 
suma y ponderación habituales de los respectivos 
espacios, no son espacios vectoriales reales.

}   en creciente  f  /  ) ,(Ff {D
}  0det(A)  /   )(M A{C

} a  /  [x]P5x  a {B

} 32x   /   y   y),x({A

n

2
2

2

ℜℜℜ∈=

≠ℜ∈=
ℜ∈∈+=

−=ℜ∈=

Ejercicio:  Demuestre que los conjuntos A, B, C  y  
D mencionados anteriormente, no son espacios 
vectoriales reales.
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Cuando un subconjunto W de un espacio 
vectorial V sobre el cuerpo   , con las 
operaciones de V restringidas a sus 
elementos, resulta ser un espacio vectorial 
sobre  , entonces se dice que W es un 
subespacio vectorial (o subespacio lineal o 
simplemente subespacio) de V.

Por lo tanto,
W  es un subespacio de V

O equivalentemente,
W0    V ∈⇒

WW0V ⇒∉ no es subespacio de V          

κ

κ
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El siguiente teorema caracteriza a los subespacios de V.

Teorema: Sea V un espacio vectorial sobre       y  W  
un subconjunto no vacío de V.   W es un subespacio de V  
si  y  sólo  si

Wu      Wu  ,)ii
Wvu      Wv ,u  )i
∈α⇒∈∀κ∈α∀

∈+⇒∈∀

Del teorema anterior sigue que, si V es un espacio 
vectorial sobre    , entonces V  y  { 0 }  son subespacios
vectoriales de V.

κ

κ
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Ejemplo:   El conjunto  no es 
un subespacio de         pues,  por ejemplo,  u = (2, 4)      D,  
v = (3, 9)      D   y   u + v = (5, 13)      D.

}  x  /   y   y),x({D 22 =ℜ∈=
∈

∈

2ℜ
∉

Ejemplo:   El conjunto  es 
un subespacio de        ; en efecto,

} 0 z-2x  /  z)    y,,x({W 3 =ℜ∈=
3ℜ

}   y  ,    /   x 2x)    y,,x({W ℜ∈=
y se tiene que,
i) 0 = (0, 0, 0) 
ii) (x, y, 2x) + (a, b, 2a) = (x + a,  y + b,  2(x + a))      W
iii)

∅≠∈     y    WW
∈

W)x2,y,x()x2,y,x( ∈ααα=α

En virtud del teorema enunciado anteriormente,  W es 
un subespacio de        . 3ℜ
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Ejemplo:  El conjunto  U = { A                   / A es simétrica}     
es un subespacio de                ; efectivamente,

)(Mn ℜ∈

)(Mn ℜ

    ;UO    )i n ∈

UA                                 
AAA)(     U)  A  (   ii)

UB  A                     
BABAB)(A                       

)BB      A(A    U  B     A,i)

tt

ttt

tt

∈α⇒
α=α=α⇒∈∧ℜ∈α

∈+⇒
+=+=+⇒

=∧=⇒∈

Por lo tanto,  W es un subespacio de              . 

puesto que la matriz nula es simétrica.

Luego     U ∅≠

)(Mn ℜ
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Ejercicio: Demuestre que los siguientes conjuntos 
son subespacios del respectivo espacio. 









=∧=+ℜ∈







=

=+∧=++ℜ∈=

=+∈++=

=ℜ∈=

0b-2c    0d-b3a   /   )(M
dc
ba

S

} 02tz-   y   0t43y  /  xt) z,  y,(x, {S

} 02ca  /  [x]P xcbx a {S

}4x    /   y   y),x({S

24

4
3

2
2

2

2
1

Ejercicio: Muestre 3 ejemplos de 
conjuntos que sean subespacios de         

y 3 conjuntos que no sean 
subespacios de         .

3ℜ
3ℜ
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Teorema: Sea  V un espacio vectorial sobre       y  sean  
U  y  W  subespacios de V.   Entonces           es un 
subespacio de V.

κ
WU∩

Efectivamente, como  0V pertenece a  U  y también a  W,   
Además si u, v son vectores de              ,  .WU0V ∩∈ WU∩

WUu   
Wu      Uu   

Wu      Uu      
,   y   WUu      

∩∈α⇒
∈α∧∈α⇒

∈∧∈
κ∈α∩∈

WU vu  
Wvu      Uvu  

Wv    Uv  V  u    Uu

∩∈+⇒
∈+∧∈+⇒

∈∧∈∧∈∧∈

Finalmente, si   
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Es posible demostrar que la intersección de 
cualquier colección de subespacios de un 
espacio vectorial V es un subespacio de V.  

También es fácil mostrar que la unión de dos subespacios
de un espacio vectorial  V  no es un subespacio de V. 
Por ejemplo, considere los subespacios de       : 

U = { (x, y)  /  y = 2x }
W = { (x, y)  /  y = 3x }

Entonces  U U W  no es un subespacio de      .
¿Por qué?

2ℜ

2ℜ
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Combinaciones lineales - generadores 

Sea  V  es un espacio  vectorial  sobre         y
un conjunto de vectores 

de V.  Una combinación lineal de  vectores  
de  S  (o de                )  es un vector de la 
forma donde   

}v , . . . . . ,v{S n1=

n1 v , . . . . . ,v
 ,v . . . . . . vv nn11 α++α=

Por ejemplo, el vector v = (-1, -2, 7) del espacio      es  
combinación  lineal  de  los  vectores   s = ( 1, -4, 3)   y       
t = (-2, 5, -1)  puesto que   v = 3 s + 2 t.

3ℜ

κ

., . . . . , n1 κ∈αα
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El conjunto de todas las combinaciones lineales 
de vectores de S resulta ser un subespacio
vectorial de V; se llama espacio generado por 
S (o espacio generado por              ) y se 
denota  <S>  o   <                     >.

n1 v , . . . . . ,v
}v , . . . . . ,v{ n1

Ejemplo:  Determinemos el subespacio generado por los 
vectores :   de   1)  1,-  0,(v   y   2)  0,  ,1(v 3

21 ℜ==

} y -2x   z  /   z)    y,(x, {                    

}   ,  /  )2  ,-  ,( {                    
}   ,  /  1) 1,- (0,2) 0, (1, {                    

}   ,  /  vv {  }v  ,v{

3

2121

=ℜ∈=

ℜ∈βαβ+αβα=
ℜ∈βαβ+α=

ℜ∈βαβ+α=><
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Ejemplo:  Sea
¿El vector                                pertenece a  < S > ?
La pregunta equivale a  ¿existen tales que     

[x]P  } 2x3x-1   ,x5x-2 {S 2
22 ⊂++=

2x54x-2p(x) −=

?5x-4x-2)2x3x-1()x5x-(2 222 =+β++α

Esta igualdad nos conduce a 

Sistema que resulta incompatible y,  en consecuencia,           

52
435

2  2

−=β+α
−=β−α−

=β+α

>∉<Sp

ℜ∈βα   ,
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Ejercicio:  Determine si las 
siguientes afirmaciones, relativas a 
un espacio vectorial V, son 
verdaderas o falsas:

V o F

T  S      T    S     D)
 T     S    T  S    )

 }v , . . . . . ,{v v   n, , . . . . 1,k    B)
V S    ,S0    A)

n1k

=⇒><=><
><⊆><⇒⊆

><∈=∀
⊆∀><∈

C

Si  V  es un espacio vectorial y S es un subconjunto de 
V, puede ocurrir que < S > = V;  en este caso se dice 
que S genera a V o que V está generado por S.
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Ejemplo:  Consideremos los vectores de      ,  
Entonces            

0), 0, ,1(e 1 =

1). 0, ,0(e   y   0) 1, ,0(e 32 == } e  ,e  ,e { 321

3ℜ

3

321

                         

}c b, a,  /  c) b, {(a,                            
} c b, a,  /  1) 0, ,0(c0) 1, b(0,0) 0, {a(1,   } e  ,e  ,e {

ℜ=

ℜ∈=

ℜ∈++=><

Puntos en el espacio   3ℜ

genera al espacio        ;  en efecto, 3ℜ
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está generado por  ℜ 1e1 =

0       1

está generado por  2ℜ
1) ,0(e  0), ,1(e 21 ==

1

1

P2[x] está  generado  por  {1, x, x2 } puesto  que

¿Cuáles son los generadores “naturales” de  M2(     )? 

22 xcxb1acxbxa ⋅+⋅+⋅=++

ℜ
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En       , consideremos los vectores  u = (1, 0, -1, 0),  
v = (0, 1, 0, -1)  y  w = (1, -1, -1, 1).   Entonces,
< {u, v, w} > =

= {(a, b, c, d)  / a + c = 0  y  b + d = 0 }  

4ℜ

Es decir,  < {u, v, w} > = < {u, v} >.  Este hecho no es 
casual, se deriva de la “dependencia lineal” que existe 
entre u, v, w  que, en este caso,  significa  w = u – v. 

Dependencia lineal 

Por otra parte,
< {u, v} > = 

= {(a, b, c, d)  /  a + c = 0  y  b + d = 0] 

} , , / )- ,- , ,{( ℜ∈γβαγ+βγ−αγ−βγ+α

} , / )- ,- , ,{( ℜ∈βαβαβα
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Sea V espacio  vectorial  sobre       y
un conjunto de vectores de V.  

Se dice que S es  linealmente dependiente
(l.d.) si existen escalares                      no todos 
nulos tales que 

}v , . . . . . ,v{S n1=

n1 , . . . . . , αα
0v . . . . . . v nn11 =α++α

Si  S  no es l.d., se dice que S es linealmente 
independiente (l.i.).   Por lo tanto  S  es l. i. si

n , . . . . 1,i  ,0        0v . . . . . . v inn11 =∀=α⇒=α++α

Por ejemplo, los vectores son l. i.
¡demuéstrelo!

3
321    de   e  ,e  ,e ℜ

κ
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







=








=








=








=

10
00

E    ,
01
00

E    ,
00
10

E    ,
00
01

E 4321

Sea ei el vector de      que tiene todas sus componentes 
iguales a cero, excepto la i-ésima que es uno.   Entonces 
el conjunto de vectores {e1, . . . ,en}, además de generar 
a       , es un conjunto l. i.   

nℜ

nℜ

El conjunto  {1, x, x2 }  de generadores de 
P2[x]  es un conjunto l. i.   

Los vectores 

generan al espacio  M2(     )  y  son l. i.   ℜ
Ejercicio:  Demuestre las afirmaciones hechas antes. 
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Ejercicio:  Determine si los siguientes conjuntos 
son l. i. 

)(M
40
41-

   ,
22
03

  ,
11
21

 S

]x[P} 2x-1   ,x3x   ,2x-2x 1 {S

} 2) 3, (-1,  1),  0, (-1,  2),- 1,  ,1({S

} 0) 0, (1,  0), 1, (1,  1), 1, ,1({S

24

2
222

3

3
2

3
1

ℜ⊂















 −








−







 −
=

⊂++=

ℜ⊂=

ℜ⊂=

Ejercicio: Sean V  espacio vectorial sobre    , u y  v  
vectores de V.    

a) ¿Bajo que condiciones  { v }  es  l. i.?
b) ¿Bajo que condiciones  { u,  v }  es  l.d.? 

κ
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Ejercicio:  Suponga que  { v1,  v2,  v3 } es un  conjunto 
linealmente independiente de vectores de un espacio 
vectorial V.   
Demuestre que  {v1 + v2 – 2v3,  2v2 + v3,  v1 – 2v3 }  es 
también un conjunto linealmente independiente de V.

Ejercicio:  Sea V  espacio vectorial sobre      . 
Demuestre que:   
a)
b)
c)

κ

 l.i.  S      ) l.i.   T      TS( ⇒∧⊂
d l.  S      S0 ⇒∈

 l.d.  T      ) l.d.   S      TS( ⇒∧⊂
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Base - dimensión 
Sea  V  un espacio  vectorial sobre el cuerpo    .    
Una base de V es un conjunto  B  de vectores 
de V que es  linealmente independiente y 
generador de V. 

Por ejemplo,  para cada           el conjunto B = { e1, . . . . , en}  
de vectores de       , es una base de     ;  se llama base 
canónica (o usual) de       .       

nℜ
INn∈

κ

nℜ
nℜ

Los conjuntos

son las bases canónicas de                        respectivamente.       








































=

=

10
00

  ,
11
00

  ,
00
10

  ,
00
01

 B

} x x,1, {B 2

)(M   y   ]x[P 22 ℜ
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¿Todo espacio vectorial
tiene una base?

Si un espacio vectorial posee un conjunto finito de 
generadores S, S   {0},  entonces S contiene a 
una base de V.     

≠

Para demostrar este hecho consideremos S = {v1, . . . , vm}.
(*)  Si S es l.i., entonces S es base de V.  Si S no es l.i., 
alguno de los vectores de S, llamemos vi depende 
linealmente de los demás y el conjunto S(1) = S – {vi} sigue 
generando a V.  Y volvemos a (*) pero ahora con S(1).
Repitiendo este proceso llegamos a obtener una base de V 
que, al menos, tendrá un solo vector no nulo.   
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¿Cada espacio vectorial
tiene una única base?

No, por ejemplo, sea B el conjunto de vectores de 
B = {(-2, 1, 0), (1, 3, 2), (1, 1, 1)}

     
02

03
02

        

0) 0, (0,1) 1, ,1(2) 3, ,1(0) 1, ,2(

=γ+β
=γ+β+α
=γ+β+α−

⇒

=γ+β+−α

3ℜ

i) Demostremos que  B es linealmente independiente.
Sean                       tales que   ℜ∈γβα   , ,

Luego  B  es l. i.   

Sistema que tiene solución 
única   0  ,0  ,0 =γ=β=α
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c2

b3
a2

        

c) b, (a,1) 1, ,1(2) 3, ,1(0) 1, ,2(

=γ+β
=γ+β+α
=γ+β+α−

⇒

=γ+β+−α

Luego B genera a        y B es una base de       .  

En consecuencia,   

3ℜ

ii) Demostremos que  B  genera a        .
Sea                        y                       tales que   ℜ∈γβα   , ,

3ℜ
3 c) b, ,a( ℜ∈

Sistema que tiene solución única   
        

7c4b-2a   
3c-b2a

c2ba
 

+−=γ
+=β

+−−=α

(-a-b+2c)(-2, 1, 0) + (a+2b-3c)(1, 3, 2) + (-2a-4b+7c)(1, 1, 1) = (a, b, c)   

3ℜ
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Ejercicio:  Suponga que  { v1,  v2,  v3 } es 
una base de un espacio vectorial V.   
Demuestre que  {v1 + 2v2 – v3,  v2 + 3v3,  
v1 + 4v2 + 6v3 } también es una base de V.

Ejercicio:  Determine si los conjuntos S1, S2 son 
base del espacio P2[x].

S1 = { 2 + 3x + x2,  3 + x,  -1 + 2x + x2 }
S2 = {1 + x2,  -1 + x,  2 + 2x }  
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Un espacio vectorial V sobre    puede tener múltiples 
bases, pero se puede demostrar que todas ellas, cuando 
son finitas, tienen el mismo número de elementos (la 
misma cardinalidad).  Este hecho nos permite entregar el 
siguiente concepto:

Si  V  es un espacio vectorial sobre    
que tiene  una  base  B  con  n  vectores, 
entonces se dice que V es un espacio de 
dimensión finita y el número entero  n  se 
llama dimensión de V.

κ

κ

Si  V  tiene dimensión n, anotaremos  dimKV = n o     
dim V = n, si no hay lugar a confusión.    
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¿Cuál es la dimensión 
del espacio {0}

El espacio V = {0} no posee base, sin 
embargo se le asigna la dimensión cero:    

dim {0} = 0

En consecuencia,   

mn)(M dim     ,4)(M dim
1n]x[P dim      ,3]x[P dim

n dim     1, dim

mn2

n2

n

=ℜ=ℜ

+==
=ℜ=ℜ
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Ejemplo:  Determinemos la dimensión del subespacio
de  P2[x] ,  W = { a + bx + cx2 /  2a – b + 4c = 0} 

>++<=

ℜ∈+++=

ℜ∈+++=

+=++=

} x4x  2x,1 {      

} c a,  /  )x(4xc2x)a(1 {      

} c  a,  /  cx4c)x(2aa {      

}4c 2ab  /  cxbx{a  W

2

2

2

2

Siendo B = { 1 + 2x,  4x + x2 } un conjunto generador de 
W y linealmente independiente, puesto que B tiene dos 
vectores y uno no es “múltiplo escalar” del otro,  B es una 
base de W;  luego dim W = 2.   

Se tiene que   



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 120

Observaciones:  
1) La dimensión del espacio vectorial real  C de los 

números complejos es 2.   Pero si consideramos a  
C como espacio vectorial sobre si mismo, 
entonces  C es un espacio de dimensión 1.
Justifique esta afirmación.

2) Existen espacios vectoriales que no poseen una 
base finita.  Dichos espacios se dicen de 
dimensión infinita; por ejemplo, el espacio 
vectorial real C([a, b];    ), de todas las funciones 
reales continuas en [a, b] tiene dimensión infinita.
Muestre otro ejemplo de un espacio vectorial de 
dimensión infinita.

ℜ
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Sea V un espacio vectorial sobre   de 
dimensión finita n.   La demostración de los 
siguientes teoremas queda de ejercicio.

1. Si  S = {v1, . . . . , vm}      V,  con m > n, entonces S es l.d.

2. Si  B = {v1, . . . . , vn}     V  es l. i.,  entonces B es base de V.

3. Si  B = {v1, . . . . , vn}     V  es generador de V, entonces B 
es base de V. 

4. Si  W  es un subespacio de V,  entonces   

5. Si W es un subespacio de V tal que dim W = n,  entonces   
V = W.

⊂

n Wdim ≤

⊂

κ

⊂
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Teorema (Completación de base)
Sea V espacio vectorial sobre      de dimensión finita n. 
Si                                 con k < n,  es un conjunto lineal-
mente  independiente,   entonces  existen   vectores            

tales que                                
es base de V.

V,}v , . . . . . ,v{ k1 ⊂

Vv , . . . . . ,v n1k ∈+ }v , . . . ,v ,v , . . . . ,v{ n1kk1 +

En un espacio vectorial V de dimensión finita, 
un conjunto linealmente independiente de 
vectores de V puede completarse hasta 
formar una base de V.

Ejercicio:  Demuestre el teorema precedente.

κ
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Ejercicio:  Considere el subespacio de M2(R),

a) Determine una base S para W.

b) Encuentre una base B de M2(R)  que contenga a la 
base S de W. 









=+∧=+







= 03d-ba    0 4d-c2b-a  /  

dc
ba

W

Ejercicio:  Determine todos los valores del número k 
de modo que el conjunto

B = { (1, 1, -1), (3, k, k), (4, k, 0)}
sea una base de R3.
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El siguiente teorema nos proporciona otra 
caracterización para las bases de un espacio 
vectorial de dimensión finita.

Teorema:   Sea  V  espacio  vectorial  sobre      y sea 
B = {v1, . . . . , vn}  conjunto de vectores de V.
B  es base de V           todo vector  v  de  V se escribe 

de una única manera como 
combinación  lineal  de  los
vectores  de  B.   

⇔

κ

Ejercicio:  Demuestre el teorema precedente.
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El  teorema precedente asegura que para cada
existen únicos escalares                              tales que

Vv∈
κ∈αα n1  , . . . . . ,

nn11 v  . . . . . vv α++α=

) , . . . . . ,(]v[ n1B αα=

Observe que          es un vector de        .  Por esta razón, 
muchas veces es llamado vector coordenado.    

B]v[

Estos escalares reciben el nombre de 
coordenadas del vector v con respecto 
a la base (ordenada) B y se denotan

nκ
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¿Cuáles son las coordenadas de v = (6, -5)  con respecto 
a la base ordenada  B = {(5, - 3),  (2, -1)} ?   

Ejemplo: Las coordenadas del vector v = (6, -5)        con 
respecto a la base canónica  E = {(1, 0),  (0, 1)} de       son2ℜ

7)-  ,4(]v[ B =

)5-  ,6(]v[ E =

2ℜ∈

Debemos resolver para                    la ecuaciónℜ∈βα    ,
5)-  (6, 1)-  ,2(  3)-  ,5( =β+α

es decir,

De aquí,

5-  3-
625

=β−α
=β+α
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Ejemplo: Sea            tal que                       ,  donde B es 
la base ordenada  B = {(1, -1, 3),  (1, 0, -2),  (3, 1, -1)}.   
¿Cuál es el vector v?   Determinemos [ v ]C , donde C es 
la base  C = {(1, 0, 1),  (1, 1, 2),  (1, 1, 4)}.              

3v ℜ∈ 2) 1,- ,1(]v[ B =

El vector es  v = 1(1, -1, 3) - 1(1, 0, -2) + 2(3, 1, -1) = (6, 1, 3) 
Determinemos tales que  ℜ∈γβα   , ,

3) 1, ,6()4 1, (1,2) 1, 1,()1 0, ,1( =γ+β+α
Esto requiere resolver el sistema compatible  

             
342

1
6

      
=γ+β+α

=γ+β
=γ+β+α

Obtenemos  [ v ]C = (5, 3, -2)
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Ejemplo:  Consideremos la base ordenada de  P2[x]       

Determinemos las coordenadas del vector            
con respecto a la base B, esto es, 

encontremos                        tales que 

}3x2  x,1  ,x1{B 22 +++=

23x-x54)x(p +=

ℜ∈γβα   , ,
222 x3x54)3x(2x)1()x1( −+=+γ++β++α

Reordenando e igualando polinomios obtenemos el 
sistema:   

             
-33

5
42

        
=γ+α

=β
=γ+β+α

⇒

cuya solución nos conduce a   
)2-  5,  ,3()]x(p[ B =
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Sea  V  espacio  vectorial  sobre      y  B  una base 
ordenada de V.   Entonces,    

κ

κ∈α∀∈∀α=α

∈∀+=+

  V,v   , [v]  v][   (2)
Vu v,   , ]u[[v]  u][v    )1(

BB

BBB

Ejercicio:  Sea  B = { v1,  v2,  v3 }  una base ordenada 

de  R3.   Determine los vectores de  B  si se sabe que  
(-1, 1, 1),  (1, -1, 2)  y  (3, -1, 1)  son las respectivas 
coordenadas, según la base B,  de los vectores  e1, e2,  
e3 de la base canónica de  R3 . 
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Suma  y  Suma directa 
Sea  V  un espacio vectorial sobre      y sean U, W dos 

subespacios de V.
Ya mencionamos que la unión de U y W no es, 

necesariamente, un subespacio de V.  Definiremos U + W, 
la suma de U y W; esta resultará ser un subespacio de V 
que contendrá a ambos subespacios.   

κ

} W  wU,u  w, u  vV  /  v {WU ∈∈+=∈=+

La suma de  U  y  W  es:  
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Se tiene que:
i) 0V = 0 + 0,  con  0    U  y  0    W 
ii) Si  v1= u1 + w1 y   v2 = u2 + w2 son vectores de U + W, 

entonces  v1 + v2 = (u1 + u2) + (w1 + w2)      U + W.
iii) Si              , entonces    

∈ ∈

∈
κ∈α WUwuv 111 +∈α+α=α

Por lo tanto  U + W  es un subespacio de V.  Además se 
puede establecer que:  

W)dim(U  -   Wdim    U dim  W)(U dim   )3(
TS WU   entonces  ,T     y   WS  U  Si   (2)

WU    y    WWUU    )1(

∩+=+

∪=+==

+⊆+⊆
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Puede suceder que  dim(U + W) = dim V,  
es decir,  V = U + W.   Por ejemplo, 
donde 

WU2 +=ℜ

Si  V = U + W,  los vectores de V no necesariamente se 
escriben de manera única como una suma de un vector 
de U y un vector de W.    En el ejemplo anterior,  

(3, 3) = 2(0, 1) + (3, 1)
(3, 3) = -6(1, 0) + 3(3, 1)    

1)}  ,3{(W    y    1)}  ,0(  0),  ,1{(U ==

En efecto,  es claro que
Por otra parte, si , entonces    

2WU ℜ⊆+
2  y),x( ℜ∈

WU   )  (x,    )-  y,0(  y),x( 3
x

3
x +∈+=
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Observe que:  

 w u  v  : W w  U,u   V,v      WUV +=∈∃∈∃∈∀⇔+=

Sea  V  un espacio vectorial sobre      y 
sean U, W dos subespacios de V.  Se dice 
que V es la suma directa de U y W, en cuyo 
caso se anota                     si    

κ

 w u  v  : W w!  U,u!  V,v +=∈∃∈∃∈∀

WUV ⊕=

Ejercicio:  Sean   U = < {(0, 1)} >   y   W = < {(3, 1)} > 
subespacios de  R2 .    Demuestre que  R2 es suma 
directa de U  y  W.
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Una caracterización útil de la suma directa la entrega el 
siguiente teorema:  

Teorema:  Sea  V  un espacio vectorial sobre      y  sean 
U, W dos subespacios de V. 

κ

{0})WU        W U (V       WUV =∩∧+=⇔⊕=

Ejercicio:  Demuestre el teorema precedente. 

Consecuencia del teorema anterior es la siguiente:  
Si  V  es un espacio vectorial de dimensión finita y 

, entonces  dim V = dim U + dim W.WUV ⊕=
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Ejercicio:  Considere los subespacios de  R3

U1 = { (x, y, z)  :  x + y + z = 0 }
U2 = < { (1, 1, 1) } >

Demuestre que  R3 es suma directa de  U1 y  U2.

>

Ejercicio:  Sean  S1 y  S2 los subespacios de  M2( R)

¿Es  M2(R)  suma directa de  S1 y  S2?








=ℜ∈







=

ℜ∈=

 0  d  /  )(M  
dc
ba

 S

}  diagonal  /  A   )(M  A { S

22

21
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Dado un subespacio U de V, ¿existe un 
”suplementario” de U? Es decir, existe un 
subespacio  W  de  V  tal  que                    .   WUV ⊕=

Teorema:  Sea  V  un espacio vectorial sobre       de 
dimensión finita  n  y  sea  U   subespacio de V.   
Entonces existe  W  subespacio de V  tal  que                   .   

κ

WUV ⊕=

En efecto,  si  U = V, basta tomar  W = {0}.  Supongamos 
que  dim U = k < n  y sea  { v1, . . . , vk}  una base  de  U.  
Por el teorema completación de base,  existen  vk+1, . . . , 
vn vectores de V  tales que  { v1, . . . . , vn }  es base de V.  
Sea  W =  { vk+1, . . . , vn}   ;  entonces .    WUV ⊕=
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El suplementario de un subespacio U no es 
único.   En     cualquier par de rectas no 
colineales que pasen por el origen, están 
asociadas a subespacios suplementarios.   

2ℜ

Ejercicio:  Considere el subespacio de         ,
U = {(x, y, z, t)  :  x - 2y + z – 4 t = 0   y  x + y + 2z = 0}

Determine  W  subespacio de         tal que                      .

4ℜ

4ℜ WU4 ⊕=ℜ
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Espacios con producto interior 
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Sea V un espacio vectorial sobre    .  Un producto interior 
(p.i.) en V es una función  < , > : V x V

(u, v) < u, v >
que  satisface lo siguiente:

En esta unidad, todos los 
espacios  vectoriales  serán reales

positivo  es  v v,      0v   )iv
Vv,u;u v,   v u,   )iii

Vv ,u;;v u,  v ,u)ii
Vv ,u ,u;v ,u v ,u    v  ,uu )i 212121

><⇒≠
∈∀><=><

∈∀ℜ∈α∀><α=>α<
∈∀><+><=>+<

ℜ

< u, v >  se lee producto interior (o producto escalar) entre 
los vectores u  y  v.  

ℜ
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Un espacio con producto interior es 
un espacio vectorial V con un p.i. 
definido en él.

Observaciones:

(1) Cuando el espacio V es complejo, las condiciones 
exigidas para que una función sea p.i. son diferentes.  A 
saber, . 

(2) Si  (V, <, >)  es un espacio con p.i., entonces   

Vv u,   ; u  v,    v  u, ∈∀><=><

Vv ,u;;v u,  v ,u  )ii
Vv ,v ,u;v ,u v ,u    vv  ,u   )i 212121

∈∀ℜ∈α∀><α=>α<

∈∀><+><=>+<
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Más aún,  

ℜ∈αα∀∈∀

><α++><α=>α++α<

n1n1

nn11nn11
 , . . ,.  ,Vv ., . ,.v ,u                                

;v ,u . . . . v ,u    v . . . .v ,u

(3)   Si (V, < , >)  es un espacio con p.i., entonces  

0  v      0   v  v, =⇔=><

(4) En un espacio vectorial  V  pueden estar definidos varios 
p.i.   Por ejemplo,  las siguientes funciones constituyen 
p.i. en   

f( (x, y), (a, b) ) = xa + yb
g( (x, y), (a, b) ) = xa – ya – xb + 4yb

2ℜ
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Ejemplos de espacios con p.i.  

Para  n número natural,  los espacios       ,            y 
son espacios con p.i., si se considera:

nℜ

∫

∑

=><

=><

=><
=

1

0

t

n

1i
iin1n1

dx q(x) p(x)     q(x)  p(x),               

)Atr(B     B    A,                  

y x    ) y, . . . . ,y(  ), x, . . . . ,x(

respectivamente.

)(Mn ℜ
]x[Pn

Ejercicio:  Demuestre que efectivamente las 
funciones  < , > definidas antes son p.i. en los 
respectivos espacios.
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Ejercicio:  Calcule

a) < (3, -5, 1, -2) ,  (7, 4, -2, 3 >

b) <

c) < x2 + 5 ,  2x + 1 >

En lo que sigue, siempre que no se diga algo en 
contrario, los espacios se 
considerarán con los productos interiores definidos 
antes que son llamados p.i. canónicos o usuales. 

]x[P  y  )(M  , nn
n ℜℜ

>







−
−








   
11
87

  , 
95-
02
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Definiciones:  Sea V un espacio con p.i. < , >.

1) La norma o longitud del vector v de V es el número real

2) La distancia entre los vectores u  y  v  de V es

3) El vector  v  de  V  se dice unitario si  || v || = 1.  

><= v v, || v ||

 || v-u ||    v)  ,u(d =

Si el vector  v  de  V,         , no es unitario, 

entonces lo es.  Por ejemplo,  el vector 

v = (3, 0, 4)  no es unitario puesto que || v || = 5, 

pero lo es.      

0v ≠

|| v ||
v







=

5
4  0,  ,

5
3

|| v ||
v
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Ejercicio:  Calcule la norma de u  y la distancia entre 
u – 2v  y  3u + v   si  u = (-3, 0, 4, 0)  y  v = (1, -5, 2, 6)  
son vectores de       .     4ℜ

Ejercicio:    Si

calcule la longitud de A  y  de  A – B.     

),(M 
31
17

B   ,
51
24

A 2 ℜ∈






 −
=








−

−
=

Ejercicio:  Muestre ejemplos de vectores unitarios  
u1, u2, u3 de los espacios    que no 
sean los de la base canónica de esos espacios.

]x[P  y  )(M  , 12
3 ℜℜ
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Observaciones:

• Si | x | x  x,x || x ||   ,x 2 ==><=ℜ∈

222 yxv  ,v || v ||   ,)y ,x(v +=><=ℜ∈=• Si  

y

x

v = (x, y)

|| v ||

Coincide con lo 
aprendido: distancia 
entre dos puntos del 

plano
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2223 zyxv  ,v || v ||   ,)z ,y ,x(v  Si ++=><=ℜ∈=

v = (x, y, z)
|| v ||
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• Si  (V, < , >)  es un espacio con p.i., se puede 
demostrar que:

V    u v,    ; || u ||  || v ||    || u  v ||   )iv
Vv  ,||; v ||    || v  ||   )iii

0v   0 || v ||)ii
Vv ;0 || v || )i

∈∀+≤+
∈∀ℜ∈α∀α=α

=⇔=
∈∀≥

(Desigualdad triangular)
No es difícil demostrar i), ii) y iii) anteriores.  La 
demostración de iv) es consecuencia de otro teorema 
conocido como la Desigualdad de Cauchy-Schwartz:

V    u v,    ; || u ||  || v ||    | u v, | ∈∀≤><

dándose la igualdad si y sólo si  v  y  u  son linealmente 
dependientes.
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• Si  (V, < , >)  es un espacio con p.i., las propiedades 
enunciadas para la norma ||  || permiten demostrar lo 
siguiente para la distancia entre vectores:

V    w u, v,    ; u) d(w,   w)d(v,  u) d(v,   )iv
Vu  ,v   v); d(u,  u) ,vd(   )iii

uv   0 u) ,v(d   )ii
Vu  ,v ;0 u) ,v(d)i

∈∀+≤
∈∀=

=⇔=
∈∀≥

(Desigualdad triangular)

d(v, w) = || v – w ||
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Definición: Sea V un espacio con p.i. < , >.  El ángulo      

entre los vectores u  y  v  de V es tal que

||v|| ||u||
v ,ucos ><

=ϑ

ϑ

La Desigualdad de Cauchy-Schwartz le da sentido a la 
siguiente definición:








 ><
=ϑ −

||v|| ||u||
v ,ucos 1

ϑ
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Ejercicio:  Calcule el ángulo entre los vectores
a)   u1 = (1, -4,  2)  y  u2 = (-5, 1, -1)
b)   v1 = (1, -1, 1, -1)   y   v2 = (2, 0, 3, 5)     

Ejemplo:  Calculemos el valor del número real k para 
que el ángulo formado por los vectores  u = (1, k,  1)  y  
v = (1, 1, 0)  sea           radianes.        3

π

0k                                             

2
1

42k

k1      
22k

k1cos
232

1

=⇔

=
+

+
⇔=















+

+
=ϑ π−
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Definición: Sea V un espacio con p.i. < , >.  Se dice que:

1) Los vectores  u, v de V  son ortogonales o 
perpendiculares si  < u, v > = 0.

2) El conjunto S de vectores de V es un conjunto 
ortogonal si todos sus elementos son ortogonales entre 
sí.

3) El conjunto S es ortonormal si es ortogonal y todos sus 
elementos son unitarios.

o  v ,u       v   u =><⇔⊥
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Por ejemplo, en         los vectores u = (a, b)  
y   v = (-b, a)  son ortogonales  puesto que  
< u, v > = 0.

Sea  B = {e1, . . . . , en}  la base canónica de      .  Los 
vectores de B tienen la siguiente característica:

nℜ





≠
=

=><
j  i  si0
j  i  si1

  e ,e ji

En consecuencia,  B es un conjunto ortogonal.  Más aún, 
B es un conjunto ortonormal puesto que           

i   ,11e ,e  || e|| iii ∀==><=

2ℜ
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Observaciones: Sea  V  espacio con p.i.  < , >
1. El vector  0  es ortogonal a todos los vectores de V.  

En efecto, si v es cualquier vector de V, podemos 
escribir

2. Si  S  es un conjunto ortogonal de vectores de V, 

es un conjunto ortonormal

pues  

0    0 ,v  
0 v,   0 v,   0 ,v  

0  0 v,   0 ,v      

=><⇒
><+><=><⇒

>+<=><









∈= Sv  /  
|| v ||

vS o

0  u ,v
|| u ||

1
|| v ||

1  
|| u ||

u  ,
|| v ||

v =><=><
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Ejemplo:  Determinemos todos los valores reales de k 
de modo que los vectores  u = (k2,  2,  k)  y  w = (k,  3, -7) 
sean ortogonales.  

< u, w > = 0 k3 + 6 – 7k = 0
(k – 1)(k – 2)(k + 3) = 0
k = 1   o    k = 2   o   k = - 3

⇔
⇔
⇔

Ejercicio:  Para qué valores del número real k los 
siguientes vectores son ortogonales (p.i. usuales):

a)   u1 = (k, 1, 2, k)  y  u2 = (4, 3k, k + 10, k)
b) p(x) = x   y   q(x) = x – k
c) 







 −
=









 −=
2k
11

 B    y    
k2
4kA

2
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Teorema de Pitágoras:
Sea V un espacio con p.i. < , >  y sean  u,  v  vectores de 
V  tales que             .  Entoncesv u ⊥

222 || v ||  || u ||  || v  u || +=+

Ejercicio:  Sea  V  espacio con p.i. < , >.  Demuestre 
que para todo  u, v  vectores de  V  se tiene que:

|| u + v ||2 +  || u – v ||2 =  2 ( || u ||2 + || v ||2 )

(Ley del Paralelógramo)
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Complemento ortogonal

Sea  S = { (1, -2, 3),   (-2, 5, -1) } .  Encontrar dos 
vectores unitarios y ortogonales a los vectores de S. 

a) Queremos (x, y, z)  tales que  <(x, y, z), (1, -2, 3)> = 0   y 
<(x, y, z), (-2, 5, -1)> = 0.   Por lo tanto debemos resolver 

3ℜ⊂

 
0zy5x2
0z3y2x

=−+−
=+−

Obtenemos infinitas soluciones para este sistema:             

ℜ∈λλ−   ; 1) 5,- ,13(

Resolvamos el siguiente problema:             
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b) Escojamos dos de estas soluciones:  v1 = (-13, -5, 1) 
y  v2 = (13, 5, -1); entonces v1 y  v2 son ortogonales a 
los vectores de S.

c) Pero  v1 y  v2 no son unitarios puesto que
|| v1 || = = || v2 ||.             195

d) Entonces los vectores

satisfacen lo pedido.               

2195
1

21195
1

1 vu   y   vu ==
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Definición: Sea V un espacio con p.i. < , >  y            .    
El complemento ortogonal de S es el conjunto,

VS⊆

{ }
{ }Sx  , 0   xv, V  /  v       

Sx  ,x  vV  /  v S
∈∀=><∈=

∈∀⊥∈=⊥

Ejemplo:  Si S = {(1, -2, 3), (-2, 5, -1)}        (problema 
precedente), entonces el complemento ortogonal de S es

3ℜ⊂

><=
=+∧=+ℜ∈=

=><
∧=><ℜ∈=⊥

 } 1) 5,- (-13, {        
} 0  z-5y2x-    03z2y- /  xz)  y,{(x,       

} 0  1)- 5, (-2, z),  y,(x,                                
  0  3) 2,- (1, z),  y,(x, / )z,y,x{(S

3

3
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Si  V es un espacio con p.i. con elemento cero  0V, 
entonces y                        .{ } V0 V =⊥ { }V0 V =⊥

Teorema: Sea  V  un espacio con  p.i. 
< , >  y            ,            .   Entonces es
un subespacio vectorial de V.

VS⊆ Φ≠S ⊥S

Efectivamente,  como  0  es ortogonal a todos los vectores 
de V, en particular  0  es ortogonal a todos los vectores de 
S; luego  Además   .S0 ⊥∈

⊥

⊥

∈+⇒

∈∀=><+><=>+<⇒
∈∀>=<∧>=<⇒∈

Svu               

Sx  0,   xv,   xu,   xv,  u                 
Sx  0, xv,   0 xu,   Sv ,u
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Finalmente, 

⊥

⊥

∈α⇒

∈∀=⋅α=><α=>α<⇒
∈∀>=<ℜ∈α⇒∈ℜ∈α

S u                 

Sx  0, 0   xu,   xu,                 
Sx  ,  0 xu,   y      Su   y  

Ejercicio: Considere el espacio M2(R) con p.i. usual.    
Determine el complemento ortogonal del conjunto

¿Cuál es el complemento ortogonal de T si se 
considera el p.i.  < A, B> = tr ( At B)?  
































 −
=

1-1
3-2

  , 
12-
40

  , 
53
11

T



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 162

Observaciones:
1. Sea  V  espacio con p.i.  < , >  y  W un subespacio

de V  tal que  W = < {w1, . . . . , wk} >.  Entonces, 
⊥⊥ = } w, . . . . . , w{ W k1

Efectivamente, 

⊥

⊥

∈⇒

=∀⊥⇒
∈∀⊥⇒∈

} w, . . . . ,w{ v               

k , . . . . ,1i , w v               
Ww  w, v   Wv

k1

i

Por otra parte,  sea entonces  W,   y   w} w, . . . ,w{v k1 ∈∈ ⊥

   y , . . . ,  con  ,w . . . . ww k1kk11 ℜ∈ααα++α=

0   wv, . . . . w ,v w ,v kk11 =><α++><α=><

es decir, ⊥∈Wv
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2.   Sea  V  espacio con p.i.  < , >  de dimensión finita    
y  W  un subespacio de V.   Entonces,

y    Vdim W dim   W  dim =+ ⊥ ⊥⊕= W  W V

Ejercicio: Sea  W  el subespacio de       ,  
W = < {(1, 2, 1), (-1, 0, 1), (-1, 4, 5)}>.   
Determine la dimensión del complemento 
ortogonal de W.

Ejercicio: Encuentre una base para el complemento 
ortogonal del subespacio de       ,

U = {(x, y, z, u) / x + y + 3z – u = 0   y   x – z + 2u = 0}

3ℜ

4ℜ
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Bases ortogonales - ortonormales

Teorema:  Sea V un espacio con p.i. < , >.  Todo 
conjunto  S  ortogonal de vectores no nulos de V  es 
linealmente independiente.

En efecto, sea  S = {v1, . .. ., vk} ortogonal y tal que               .  
Sean ; entonces     

i  ,0vi ∀≠
0v  . . . . v  que  tales   , . . . , kk11k1 =α++αℜ∈αα

0                      
0 || v ||                       

0 v ,v                      
0 v ,v.....v ,v                     

0 v.....v  ,v  k, ...., 2, 1,i

i

2
ii

iii

kik1i1

kk11i

=α⇒
=α⇒

=><α⇒
=><α++><α⇒

=>α++α<=∀

Luego  S  es l.i. 
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Consecuencia del Teorema anterior es:  

Sea V un espacio con p.i. < , > de dimensión finita.  
Sabemos que  V  posee bases pero éstas no son 
necesariamente ortogonales (ortonormales).

La construcción de una base ortogonal (ortonormal) a 
partir de una base del espacio  V  es un resultado 
importante conocido como “Proceso de ortogonalización 
de Gram-Schmidt”.

Si  S  es un conjunto ortogonal de 
vectores  no  nulos  de  V, entonces

card(S)      dim(V) ≤
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Proceso de ortogonalización de Gram-Schmidt

Sea B = {v1, . . . , vn} base de V,  espacio con producto 
interior < , >.  Proceda a considerar los vectores:

Entonces BO = {w1, . . . , wn} es una base ortogonal de V. 

12
1

1n
1-n2

1-n

1-nn
nn

12
1

13
22

2

23
33

12
1

12
22

11

  w
||w||

 w,v . . . . . .   w
||w||

 w,vvw

........

  w
||w||

 w,v  w
||w||

 w,vvw

  w
||w||

 w,vvw

vw

><
−−

><
−=

><
−

><
−=

><
−=

=
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Además,                                        es una base ortonormal de V.{ }||w||
w

||w||
w

o
n
n

1
1  , . . . . . ,  B =

¿Cómo funciona 
este Proceso?

Para comprender el proceso, definamos la 
“proyección del vector v en el vector u” como

u )v(pr 2||u||
u ,v

u
><= v

u
pru(v)



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 168

v1 

v2 

w1 

w2 

)v(pr 2w1

)v(pr  v      w
||w||

 w,vvw

vw

2w212
1

12
22

11

1
−=

><
−=

=

Entonces los vectores  w1 y  w2 de la base BO son:  
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Ejemplo:  Sea  B  la base de      , B = {(1, -1, 1), (1, 0, 1), 
(1, 1, 2)}.   A partir de la base B construyamos una base 
ortonormal para         . 

3ℜ

3ℜ

) 
2
1 0, ,

2
1(-    1) 1,- ,1(

3
2  -  ) 

3
1  ,

3
2  ,

3
1 (

2
5  -  2) 1, (1,       

1) 1,- (1,
||1) 1,- (1,||

1) 1,- (1, 2), 1, (1, - )
3
1 ,

3
2 ,

3
1(  

||) , ,(||

) , ,(  2), 1, ,1(
2) 1, ,1(w

) 
3
1  ,

3
2  ,

3
1 (       

1) 1,- (1, 
3
2 - 1) 0, (1,   1) 1,- (1,  

||1) 1,- (1,||
1) 1,- (1,  1), 0, ,1(1) 0, ,1(w

1) 1,- ,1(w

22
3
1

3
2

3
1

3
1

3
2

3
1

3

22

1

==

<><
−=

=

=
><

−=

=
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Entonces, es una 
base ortogonal de        .   

Como , 

es una base ortonormal de       .  









−= 1) 0, ,1(
2
1 1), 2, (1,

6
1 , 1) 1,- (1, B

3
1

o

{ }) 0, ,(-  ), , ,(  1), 1,- ,1( B 2
1

2
1

3
1

3
2

3
1

o =
3ℜ

3ℜ

2
1

13
6

21   ||w||    ,  ||w||    ,3  ||w|| ===

Ejercicio: Encuentre una base ortogonal para      a 
partir de la base B = {(1, 1, 1),  (0, 1, 1),  ( 0, 0 , 1)}.

3ℜ
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Ejercicio: Encuentre una base ortogonal para los 
siguientes subespacios de         y   M2(R):

U = {(x, y, z, u) / x + y = 0   y   z + u = 0}

4ℜ

Ejercicio: Aplique el Proceso de ortogonalización de 
Gram-Schmidt a las siguientes bases de      :

a)    B = {(2, 1, 0),  (-1, 1, 1),  ( 1, 0 , 3)}

b)    B = {(1, 1, 0),  (1, 0, 1),  ( 0, 1 , 1)}

3ℜ









=∧=ℜ∈







= 0 c    0 a  /  )(M 

dc
ba

W 2



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 172

Observación:
Si  V  es un espacio con p.i. < , >  de dimensión finita  y  
Bo = {w1, . . . ., wn}  es una base ortogonal de V,  las 
coordenadas del vector  v  de V  con respecto a la base  
Bo son .   En efecto,  como ,  
para cada i = 1, . . . , n,    

 2
i

i

||w||
 w,v

i
><=α ∑

=

α=
n

1i
ii wv

2
ii

iii

inni11

inn11i

||w||              

 w,w              
 w,w . . . .  w,w              

  w,w . . . . w   w,v

α=

><α=
><α++><α=

>α++α<=><
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Proyección ortogonal
Sea  V  un espacio con p.i. < , >  y  W  un subespacio de  V  
con base ortogonal  {w1, .……. , wk}.  La proyección 
ortogonal del vector  v  de V en el subespacio W es el 
vector  

  w)v(prv i

k

1i
||w||

 w,v
W 2

i

i∑
=

><==

v

prW(v)

W

•

•
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La aplicación   p : V                  W ;  definida 
por p(v) =  ,  se llama proyección 
ortogonal de V en W.  

v

Ejemplo:  En       consideremos el subespacio W  
generado por S = {(1, -2, 3), (5, -1, 0)}  y determinemos la 
proyección ortogonal del vector  v = (4, -1, 6) en W.

i)   S  es una base de W pero S no es ortogonal.

ii) Aplicamos a S el Proceso de Gram-Schmidt y 
obtenemos S0 = {(1, -2, 3), (3, 0, -1)} base ortogonal de W. 

iii)  La proyección ortogonal de v en W es:

3ℜ

1)- 0, ,3(  3) 2,- ,1(v 5
3

7
12 +=
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Ejercicio: Encuentre la proyección 
ortogonal del vector v = (1, 1, -1) de        en 
el subespacio U = {(x, y,z)  /  x – y – 2z = 0}

3ℜ

Ejercicio: Sea  W = <{(1,0,1,0), (1,0,3,0), (2,1,4,1)}>. 
Determine la proyección ortogonal de v = (1,1,1,-1) en W.

Ejercicio: Encuentre la proyección 

ortogonal de                en el subespacio de 

M2(R) generado por .








−

=
01
11

A

















13
00

      y
00
11
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Transformaciones lineales 
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Sean V  y  W  espacios vectoriales sobre 
el cuerpo    de los números reales.  Una 
transformación lineal o aplicación lineal de V 
en W es una función  T : V             W que 
satisface: 

κ

Vv;v);(T)vT(     )ii
Vv,u);v(T)u(T)vT(u      )i
∈∀κ∈α∀α=α
∈∀+=+

Si T es una transformación lineal de V en W, entonces

. , . . . . ,   ,V v, . . . . ,v
),v(T . . . . . )v(T)v  . . . . . vT(

n1n1

nn11nn11
κ∈αα∀∈∀

α++α=α++α

)v(T . . . . . )v(T)v . . . . . vT( n1n1 ++=++

Más aún,
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         0)0(T ⇒≠

ℜ→ℜ       :f

Ejemplos de aplicaciones lineales  
1) Consideremos la función f(x) = 4x.   

Entonces,  
f(x + a) = 4(x + a) = 4x + 4a = f(x) + f(a)

Si T es una transformación lineal de V en W, entonces  
T(0) = 0.  Esto se enuncia de manera equivalente así,

T  no es aplicación lineal

   )x(f)x3()x(3)x(f α=α=α=α

Por lo tanto, f es una aplicación lineal.  Pero si definimos 
g(x) = x + 4,  g  no es una aplicación lineal puesto que

.   Observe que la función g tampoco cumple las 
condiciones i) y ii) exigidas para ser transformación lineal.

0)0(g ≠
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Las siguientes funciones de        en        no son lineales:ℜ ℜ

 xcosf(x)   x        lnf(x)          e)x(f

f(x)           xf(x)          x)x(f

x
x
12

===

===

¿Cuáles son las funciones
lineales de      en       ?ℜ ℜ

2) Sea la función definida así,
T(x, y, z) = (2x – y + z,  y + 3z).

Entonces T es una aplicación lineal.  ¡Demuéstrelo! 

23       :T ℜ→ℜ
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3) Consideremos
Entonces,  

)A(FA)A()A(F

)B(F)A(FBA)BA()BA(F
tt

ttt

α=α=α=α

+=+=+=+

4) La función es lineal; en 
efecto, 

T(p + q) = (p + q)’ = p’ + q’ = T(p) + T(q)
T (a p) = (a p)’ = a p’ = a T(p) ,  

t
nxmmxn AF(A)    );(M    )(M  :F =ℜ→ℜ

Por lo tanto  F  es una transformación lineal.

dx
dp

23 'pT(p)   ];x[P    [x]P  :T ==→

ℜ∈a

Ejercicio: Muestre un ejemplo de una aplicación de     
en         que sea lineal y otro que no sea lineal.2ℜ3ℜ
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Destacamos los 
siguientes dos 

ejemplos

5) Si V  y  W son espacios vectoriales sobre     ,

es una aplicación lineal
Woo (v)T     W  V  T 0;: =→

6) Si V es un espacio vectorial sobre     , la función

es lineal; se llama aplicación identidad de V.
uI(u)   ;V    V  :I =→

κ

κ
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El siguiente teorema nos enseña a extender a 
todo el espacio dominio, una aplicación lineal que 
se conoce sólo en una base de dicho espacio.

Teorema: Sean V un espacio vectorial sobre     con 
base B =                      y  W un espacio vectorial sobre   .  
Si    entonces existe una única aplicación 
lineal T de V en W  tal que .  

}v, . . . . . ,v{ n1
Ww, . . . . . ,w n1 ∈

n, . . . . 1,i  ,w)vT( ii =∀=

En efecto, si          , existen únicos tales que         Vv∈ κ∈αα n1 , . . . . . ,
nn11 v . . . . . vv α++α=

La aplicación T de V en W  definida por:          

nn11 w  . . . . . w)v(T α++α=
satisface lo requerido en el teorema.          

κ
κ
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Ejemplo: ¿Cuál es la aplicación lineal  T de       en        tal 
que T(1, 0) = (-3, 1)   y   T(0, 1) = (5, -4)?

2ℜ

2ℜ∈

2ℜ

Sea  (a, b)         , entonces  (a, b) = a (1, 0) + b (0, 1).
La aplicación   T  que satisface lo requerido es:

T :               ; T(a, b) = a(-3, 1) +b(5, -4),
o más precisamente,  T(a, b) = (-3a + 5b,  a - 4b).

2ℜ2ℜ

¿Cuál es la aplicación lineal T si se quiere que T(4,-3) =(-3, 1)   
y   T(-3, 2) = (5, -4)?   En este caso debemos escribir,

(a, b) = (-2a – 3b) (4, -3) + (-3a - 4b) (-3, 2)
Y la aplicación lineal es,
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Ejercicio: ¿Cuál es la aplicación lineal T de      
en         tal que  T(1, 0, 0) = (2, -3),  T(0, 1, 0) = 
(1, 1)  y  T(0, 0, 1) = (6, 5)?

3ℜ 2ℜ

T(a, b) = (-2a – 3b)(-3, 1) + (-3a - 4b)(5, -4),
es decir,  T(a, b) = (-9a - 11b, 10a + 13b).

Ejercicio: Determine la aplicación lineal T de     en         
tal que  T(1, 1, 1) = 2 + x,   T(1, 1, 0) = x – x2 y

T(1, 0, 0) = 1 + 3x + 2x2.       

3ℜ
]x[P2
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Ejercicio: Determine cuál (es) de las siguientes 
aplicaciones son lineales. 

det(A)T(A)    ;    )(M :T   )6
3ca
aca2

c) b, T(a,    ;)(M     :T   5)

b)a a,-2b ,a(bx)T(a    ;    ]x[P :T   4)

x)b4a2(ax5ab) T(a,    ;]x[P     :T   3)

1) b,a ,ba5(b) T(a,    ;     :T   2)

3x) 0, ,x(T(x)    ;     :T   )1

n

2
3

3
1

2
2

2

32

3

=ℜ→ℜ









−
−

=ℜ→ℜ

+=+ℜ→

+++=→ℜ

+−=ℜ→ℜ

=ℜ→ℜ
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Núcleo e imagen
Sean  V  y  W  espacios vectoriales sobre     y 
T: V             W  una transformación lineal. El 
núcleo o kernel de T es el conjunto

Ker T = {            /   T(v) = 0 } Vv ∈

La imagen de T  es el conjunto
Im T = {                                  talque  T(v) = w } Vv  /   Ww ∈∃∈

Ejemplo: Determinemos el núcleo y la imagen de la 
aplicación lineal ;  T(x, y, z) = (x - 2y,  3y + z).          23:T ℜ→ℜ

Ker T = {(x, y, z)  /  T(x, y, z) = (0, 0)}
= {(x, y, z)  /  x – 2y = 0   y    3y + z = 0 }

κ
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Resolviendo el sistema de ecuaciones lineales obtenemos         

Ker T  = {(x, y, z)  /  x = 2y       z = -3y }
= {(2y, y, -3y)  /          }
= < { (2, 1, -3) } >

Es decir, el núcleo de T resultó ser un subespacio de 
dimensión uno del espacio       .      3ℜ

ℜ∈y
∧

Im T  = { T(x, y, z)  /  (x, y, z)          }
= { (x – 2y, 3y + z)  /  x, y, z        }
= < { (1, 0), (-2, 3), (0, 1) } >
= < { (1, 0), (0, 1) } >
= 

3ℜ∈
ℜ∈

2ℜ
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Woo (v)T     W  V  T 0;: =→
? uI(u)   ;V    V  :IV =→

¿Cuál es el kernel y la imagen de las aplicaciones

El núcleo y la imagen de una transformación lineal no son 
simples conjuntos como se aprecia en el siguiente 
teorema, cuya demostración se deja de ejercicio.  

Teorema: Si T de V en W es una aplicación lineal, 
entonces el núcleo de T es un subespacio de V y la 
imagen de T es un subespacio de W.  

Ker To = V,  Im To = {0},  Ker I V = {0}   e  Im I V = V.
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La dimensión del núcleo de T se llama 
nulidad de T y la dimensión de la imagen de 
T es el rango de T.

La nulidad de T y el rango de T  serán denotados así,    

T) (Im dim(T)           T)(Ker  =ρ=η dim)T(

Y se demuestra el siguiente teorema que relaciona estos 
números mediante la igualdad    

V dim(T))T( =ρ+η

En consecuencia,      
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Ejemplo: Consideremos la aplicación lineal         

c)2a  cxbxT(a    2 +−=++ℜ→ ,ba();]x[P:T 2
2

Entonces,    

>+<=

ℜ∈+=

ℜ∈+=

=∧=∈++=

=+−∈++=

}2x-x{1            

} a  /  )2x-x{a(1           

} a  /  x2a-axa {           

} -2a c    ba  /  ]x[Pcxbx{a           

} 0) (0, c)2a  ,ba(  /  ]x[Pcxbx{aT Ker

2

2

2
2

2
2

2

(T)  -V dim(T)           (T)  - V dim)T( η=ρρ=η
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Como                            es un conjunto generador de Ker T  
y es linealmente independiente, puesto que tiene sólo un 
vector no nulo,  B es una base de Ker T;  luego .   
Así, el rango de T es    

1=η )T(

}x2x1{B 2−+=

2.1-3(T)-V dim(T) ==η=ρ

Si la dimensión de la imagen de T es 2, debe tenerse que,    
2  (T) Im ℜ=

El siguiente teorema caracteriza a 
las aplicaciones lineales inyectivas, 
epiyectivas y por lo tanto biyectivas.     



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 192

Teorema: Sea T : V                 W  aplicación lineal.
(1) T  inyectiva
(2) T  epiyectiva

0)T( =η⇔=⇔       {0}  TKer    
 W    W    T Im   dim)T( =ρ⇔=⇔

Por ejemplo, si              , la aplicación lineal  T0 (ejemplo 5) 
no es inyectiva.  Pero la aplicación identidad     (ejemplo 6) 
es inyectiva y epiyectiva, es decir,       es biyectiva.          

}0{V ≠
VI

VI

Ejercicio:  Determine si la transformación lineal F 
definida a continuación es o no es biyectiva.   









−−++−
+−++−

=







ℜ→ℜ

d2c3b3dcb
dcb2ac3ba2

dc
ba

F  , )(M    )(M  :F 22
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Isomorfismos
Recordemos que una función  f  posee función inversa          
si y sólo si  f  es biyectiva.  La función       también resulta 
ser biyectiva y tal que .            

1f −
1f −

x)x)(f(fy             x)x)(ff( -11 ==− oo

Definición: Un isomorfismo es una 
aplicación que es lineal y biyectiva.  

Ejemplo: La aplicación lineal definida por
T(x, y, z) = (x – y,  2y + z,  x + y + z) 

no es un isomorfismo puesto que  Ker T = < {(1, 1, -2)}> 
y, en consecuencia, no es inyectiva.

33:T ℜ→ℜ



__________________________________________________________________    
Algebra Lineal  - I. Arratia Z. 194

Ejercicio: Muestre que la siguiente aplicación de
en        es un isomorfismo, 

T(x, y, z) = (x - y,  2y + z,  x + 2y + z) 

3ℜ

Si T es una aplicación lineal de V en W, entonces,
• T   isomorfismo            T  invertible
• T   isomorfismo                   lineal
• T   isomorfismo isomorfismo1T   −⇔

⇔

3ℜ

Y si dimV = dimW,  entonces
T biyectiva T inyectiva T epiyectiva⇔⇔

1T   −⇔
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Si T:  V           W  es un isomorfismo, 
entonces se dice que los espacios V  y  W  
son isomorfos, en cuyo caso se anota

WV≅

d)-c  c,a  2c,  ,da(
dc
ba

T    ;    )(M :T   3)

x)cba3(x)cba2()ca(c) b, T(a,    ;]x[P     :T   2)

z)-4y xy,-2x ,x(z) y, T(x,    ;     :T   1)

4
2

2
2

3

33

++=







ℜ→ℜ

++++++−=→ℜ

+=ℜ→ℜ

Ejercicio: Determine cuál o cuáles de las siguientes 
funciones T son invertibles? 
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Ejemplo: Los espacios                      son isomorfos; el 
isomorfismo “natural”  entre ellos es 

]x[Py      2
3ℜ

2cxbxac) b, ,a(T ++=

El isomorfismo establece que los 

espacios                         son isomorfos.

d)  c,  b,  a,(
dc
ba

T =








4
2 y      )(M ℜℜ

La relación  “ser isomorfo a”  es una relación de 
equivalencia entre espacios vectoriales, es decir, 

UV     ) U   WW   (V   iii)
V  W  WV   )ii

VV    )i

≅⇒≅∧≅
≅⇒≅

≅
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Teorema: Todo espacio vectorial real de 
dimensión finita  n  es isomorfo a        .nℜ

En efecto, sea  V  espacio vectorial real de dimensión n y 
sea  B = {v1, . . . . , vn}  una base de V.  
Definamos  T :  V                        por  T(v) = [ v ]B; entonces,
• T  es aplicación lineal.
• Ker T = {            /  [ v ]B = (0, . . . , 0) } = { 0 }; luego  T  es  
inyectiva.  
• Como la nulidad de T es cero,  el rango de T es n, es 
decir,  la imagen de T es un subespacio de      de
dimensión n; entonces  Im T =         y  T  es epiyectiva.
• Así  T  es un isomorfismo  y       

nℜ

Vv ∈

.V nℜ≅

nℜ

nℜ
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Teorema: Sea  V  espacio vectorial sobre el cuerpo    
de dimensión finita n.  Entonces V es 

isomorfo a      

El teorema precedente es más general; se puede enunciar 
lo siguiente:

κ
.nκ

Ejercicio: Demuestre
1) El teorema precedente.
2) Que el espacio de las matrices reales diagonales de 

orden 3 es isomorfo a         .
3) Que el espacio de las matrices reales antisimétricas

de orden 3 es isomorfo a       . 

3ℜ

3ℜ
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El espacio de las transformaciones lineales
Sean  V  y  W  espacios vectoriales sobre     y denotemos 
por lineal}. Se puede 
demostrar que:

κ
  T  W  /    V :T {)  W,V(L →=

 )  W,V(LT   3)
)  W,V(LT        )  W,V(LTy         2)

  W)L(V,  ST      )  W,V(L  S  ,T   )1

o∈
∈α⇒∈κ∈α

∈+⇒∈

Las aplicaciones están dadas por:
(T+S)(v) = T(v) + S(v)
(   T)(v) =      T(v) 

  T y      ST α+

α α
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Por lo tanto,  L(V, W) es un espacio vectorial sobre     ; 
el espacio de las transformaciones lineales de V en W.

κ

¿Qué sucede con 
el producto?

Si  , el producto (TS)(v) = T(v) S(v)  
puede no estar definido. 

   W),V(LS  ,T ∈

Pero aún existiendo  TS,  este no es lineal.   Por ejemplo, 
sean  T, S   las transformaciones lineales de       en       
dadas por  T(x) = 3x,  S(x) = 2x.   Entonces  (TS)(x) = 6x2,
que no es lineal. 

ℜ ℜ
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Sean   ; entonces la composición  
de T  y  S,  (S oT)(v) = S(T(v)), es una transformación lineal.  
En efecto,  si y                , entonces  

  U)L(W,Sy       W),V(LT ∈∈

V vu, ∈ κ∈βα  ,

T)(v)(S T)(u)(S                          
S(T(v)) S(T(u))                          

T(v))T(u)S(                         
v)uS(T(  v)uT)((S

oo

o

β+α=
β+α=
β+α=
β+α=β+α

Recuerde que la composición de funciones es asociativa y 
distributiva con la suma:

Además,  
 R)(ST)(SR)(TSy        RT)S()RT(S ooooooo +=+=

 TTIy        TIT WV == oo
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Por estas razones, la composición de 
funciones es considerada como producto en 
el espacio de las transformaciones lineales.

En lo que sigue, y siempre que T S exista, se entenderá que 

(T S)(v) = T (S(v)) 

Ejercicio:  Sean   aplicaciones 
lineales invertibles.  Demuestre que el producto de T  y  
S  es invertible y se tiene que  (S T) -1 = T -1 S -1.  

  U)L(W,Sy       W),V(LT ∈∈

Observe que este producto no es conmutativo y además no 
todas las transformaciones lineales poseen inversa. 
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Aplicación lineal asociada a una matriz

Sea                            y consideremos la aplicación,    )(MA mxn ℜ∈

XA)X(Tpor    definida        :T A
mn

A =ℜ→ℜ

Para                                     se tiene que,       

)X(T)XA()X(A)X(T    ii)
)Y(T)X(TYAXA)YX(A)YX(T    i)

AA

AAA
α=α=α=α

+=+=+=+

ℜ∈αℜ∈ y        Y  ,X n

Es decir,         es una transformación lineal.       AT

La transformación lineal          se llama aplicación lineal 
asociada a la matriz A.

AT
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Ejercicio: Encuentre la aplicación lineal asociada a 
las matrices









−

−
=

052
139

A 3I    e     
000
000

0 







=

Ejemplo: Sea y determinemos la aplicación 
lineal asociada a A.
















−
−=
42
13
51

A

??  )y  ,x(T    ;      :T A
32

A =ℜ→ℜ

















−
−
+

=
























−
−

y4x2
yx3
y5x

y
x

42
13
51

y)42x  y,-3x  5y,(x )y  ,x(T    ;      :T A
32

A −+=ℜ→ℜ
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Más precisamente, pretendemos establecer que el 
espacio                     es isomorfo  a                  .   Para ello 
debemos mostrar una función, entre estos espacios, que 
sea un isomorfismo.  Consideremos,     

Apreciamos cierto parecido, desde un 
punto de vista algebraico, entre el 
espacio de las aplicaciones 
lineales y cierto espacio de matrices.        

)  ,(L mn ℜℜ )(Mmxn ℜ

A
nm

mxn T)A(Fpor     definida   ),L(    )(M :F =ℜℜ→ℜ

¿Parecidos?

Aplicaciones lineales y matrices
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F  es una función bien definida y además es lineal, puesto 
que        ℜ∈αα=+= α+     ,TTy            TTT AABABA

F  es inyectiva pues  Ker F =        

F  es epiyectiva ya que para cada transformación lineal 
T  de      en       , existe una matriz                      tal que  
F(A) = TA = T .   Esta matriz  A  es única, se llama matriz 
asociada a la transformación lineal T,  se denota  [ T ] y 
se determina así:       

Ejercicio: Demuestre estas igualdades.

}0 {  } TTA  /   { mnoA ==

nℜ mℜ )(MA mxn ℜ∈

Se tiene que: 
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t

mn2n1n

m22212

m12111

a. . . .aa
. . . .. . . .. . . .. . . .

a. . . .aa
a. . . .aa

]T[A



















==

Sean                      y                         las bases canónicas 
de        y           respectivamente.  Entonces,

}e , . . . . . ,e { n1 }e , . . . . . ,e { m1
nℜ mℜ

mmn2n21n1n

mm22221122

mm12211111

ea . . . . . eaea)e(T
. . . . . .. . . . . .

ea . . . . . eaea)e(T
ea . . . . . eaea)e(T

+++=

+++=
+++=

y la matriz,      
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Por lo tanto,  F  es un isomorfismo y 
queda establecido que       

, 

a. . . .aa
. . . .. . . .. . . .. . . .

a. . . .aa
a. . . .aa

]T[A

mnm2m1

2m2221

1m1211



















==es decir, la matriz      

es tal que, F([T]) = F(A) = TA = T.

)(M    )  ,(L mxn
mn ℜ≅ℜℜ
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Ejemplo: Consideremos la aplicación lineal,
5y)2x  3y,  x2y,-(4x )y  ,x(T   ;      :T 32 ++=ℜ→ℜ

y determinemos la matriz asociada a T.      















 −
=








−

=
52
31
24

532
214

]T[
t

1) 0, 5(0,0) 1, (0,30) 0, (1,25)  3,  ,2()1 ,0(T    
1) 0, (0,20) 1, 1(0,0) 0, 4(1,2)  1,  ,4()0 ,1(T

++−=−=
++==

Entonces la matriz asociada a T es:      

Procedemos a evaluar T en los vectores de la base canónica 
de      y luego, a escribir estas imágenes como combinación 
lineal de los vectores de la base canónica de       .           

2ℜ
3ℜ
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z)y-2x  7z,-y3(-x )z  ,y  ,x(T   ;      :T 23 ++=ℜ→ℜ

z)2y5x  z,6  xz,-(7y )z  ,y  ,x(T   ;      :T 33 +−+=ℜ→ℜ

Consecuencia del isomorfismo 

que se ha establecido tenemos que:  
[T + S] = [T] + [S]
[a T] = a [T] ,  a  número real

-1-1 [T]][T =

)(M    )  ,(L mxn
mn ℜ≅ℜℜ

Además,  [T o S] = [T] [S] y si T es invertible,   

Ejercicio: Determine la matriz asociada a las 
siguientes transformaciones lineales.        
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Matriz asociada - Caso general
Consideremos ahora V  y  W  espacios vectoriales de 

dimensión n  y  m  respectivamente y sea T: V              W 
una aplicación lineal. Repetimos el procedimiento realizado 
para obtener la matriz asociada a T pero considerando las 
bases B = {v1, ….., vn}  y  E = {w1, ….. ,wm} de V  y  W  
respectivamente.   Evaluamos T en los vectores de B y luego 
expresamos estas imágenes como combinación lineal de los 
vectores de E.

mmn2n21n1n

mm22221122

mm12211111

wa . . . . . wawa)v(T
. . . . . .. . . . . .

wa . . . . . wawa)v(T
wa . . . . . wawa)v(T

+++=

+++=
+++=
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La matriz,      



















=



















mnm2m1

2m2221

1m1211
t

mn2n1n

m22212

m12111

a. . . .aa
. . . .. . . .. . . .. . . .

a. . . .aa
a. . . .aa

a. . . .aa
. . . .. . . .. . . .. . . .

a. . . .aa
a. . . .aa

se denota y es la matriz asociada a la 
transformación lineal T  o matriz de representación 
de T, cuando se consideran las bases B de V  y  E de W.       

E
B[T]

Cuando  n = m  y  B = E ,  la matriz            se denota      .B[T]E
B[T]
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La matriz             está caracterizada así:        

Si las coordenadas de v    V  con respecto a la 
base  B  son                            , entonces              

son las coordenadas de la imagen 
T(v) con respecto a la base E.

∈
) x, . . . . ,x(X]v[ n1B ==

X[T]EB ⋅

La matriz de representación de T establece un isomorfismo  
entre el espacio                    y  el  espacio   . 

Consecuencia de este isomorfismo es lo siguiente:   

Si T  y  S  son transformaciones lineales de V en W,  B  y  E  
son bases de V  y  W  respectivamente, entonces:

 W)L(V, )(Mmxn κ

E
B[T]
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   [T]  [S]  T][S E
B

C
E

C
B ⋅=o

 [S][T]  S][T E
B

E
B

E
B +=+

κ∈αα=α     , [T]   T] [ E
B

E
B

Además,  si  T:  V             W    y   S:  W              U son 
transformaciones lineales y  B, E, C  son bases de V, W  
y  U  respectivamente, entonces       

Si  T: V W   es una aplicación lineal invertible y  
B, E  son bases de V  y  W  respectivamente, entonces  

 I    ]I [    ]T[T    ][T  [T] n
E
EW

E
E

-1B
E

-1E
B ===⋅ o
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Ejemplo: Consideremos la aplicación lineal,

z)3x  z,-y2(x )z ,y ,x(T   ;      :T 23 ++=ℜ→ℜ

Finalmente, el rango de T es        

)([T]T) dim(Im(T) E
Bρ==ρ

 I    ]I [    T][T    [T]  ][T n
B
BV

B
B

-1E
B

B
E

-1 ===⋅ oy      

Por lo tanto,             es invertible y  se tiene que:  E
B[T]

B
E

-1-1E
B ][T   ) [T] ( =
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y determinemos la matriz           donde B = { (1,1,1), (1,1, 0), 
(1, 0, 0)}  base de        y   E = {(2, 3), (-3, -5)}  base de      .     

Tenemos que calcular las coordenadas                originadas 
así:

5)- (-3,3) (2,3) ,1()0 0, ,1(T
5)- (-3,3) (2,3) ,3()0 1, ,1(T
5)- (-3,3) (2,4) ,2()1 1, ,1(T

21

21

21

γ+γ==
β+β==
α+α==

De este modo obtenemos la matriz:      









−−
−−

=
















−−

−−
=

332
462

34
36
22

]T[

t

E
B

E
B[T]

3ℜ 2ℜ

iii  , , γβα
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Ejemplo: Determinemos la matriz           asociada a la 
transformación lineal  T  de P3[x]  en  P2[x]  definida por  
T(p(x) = p’(x)  si  B = {1, x, x2, x3}  y  E = {1, x, x2}.    

E
B[T]

T(1) = 0     =  0 + 0x + 0x2

T(x) = 1     =  1 + 0x + 0x2

T(x2) = 2x  =  0 + 2x + 0x2

T(x3) = 3x2 =  0 + 0x + 3x2

En este caso,        

Por lo tanto,        















=

3000
0200
0010

[T]EB

¿Esta matriz 
deriva 

polinomios?
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Ejemplo: Determinemos la matriz asociada a la 
aplicación identidad de         en los siguientes casos 

donde E = {e1, e2}  es la base 
canónica de        y  B = {v1 =(1, -2), v2 = (3, -4)}.     

2ℜ E
E]I[

 ]I[y      ]I[  ,]I[ B
B

B
E

E
B

2ℜ

Puesto que,        e1 =  1e1 + 0e2 ,   e2 =  0e1 + 1e2

y   v1 =  1v1 + 0v2,   v2 = 0v1 + 0v2

obtenemos         ]I[    I    ]I[ B
B2

E
E ==

Verifique que en los otros casos,        

 
1

-2-
  ]I[y       

4-2-
31

  ]I[
2

1
2

3
B
E

E
B 










=








=
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Si  V  es un espacio vectorial de dimensión n y B es 

cualquier base de V, entonces la matriz de la aplicación 

identidad es .   Pero si  E es otra base 

de V, entonces                       .   Observe lo siguiente:  
nBV

B
BV I]I[][I ==

n
E
BV I   ]I[ ≠

Es decir, la matriz            es invertible y su 
inversa es            .   

E
BV]I[

B
EV]I[

Matriz de cambio de base

 I    ]I [    ]I[I    ][I  ][I n
E
EV

E
EVV

B
EV

E
BV ===⋅ o

 I    ]I [    ]I[I    ][I  ][I n
B
BV

B
BVV

E
BV

B
EV ===⋅ o
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B
B

E
BV

E
E

B
EV

E
B

E
BV

E
E

B
E

E
E

B
EV

[T]    ]I[   [T]   ]I[

[T]   ][I   ]T[

[T]   [T]   ]I[

=⋅⋅

=⋅

=⋅

Si  V es un espacio vectorial de dimensión finita n,  B  y  E  
son bases de V  y  T: V           W   es una aplicación lineal, 
entonces:           

Las  matrices son  llamadas  matrices  
de  cambio  de  base, nombre que se deriva de lo 
siguiente:

B
EV

E
BV ][Iy        ][I

¿Cambia
base?
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Ejercicio: Considere la transformación lineal  F  de
en  P2[x]  definida por  F(a, b, c) = a + (2b+c) x + (b-a) x2.
Determine:
(1) La matriz [F] asociada a F.
(2) La matriz  [F -1]  asociada a F -1.    
(3) La expresión algebraica  F -1(a + bx + cx2).
(4) La matriz           de representación de F cuando se 

consideran la base  B = {e1, e2, e3}  canónica de        y  
E = {1 + x – x2,  2 + x,  x2 – x}  base de P2[x].    

3ℜ

E
B[F]

3ℜ
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Ejercicio: Sea V  un espacio vectorial real de dimensión 2 
con base B = {u, v}  y  T  una aplicación lineal de V en V   tal 
que  T(2u + v) = -4u - v    y   T(u) - 2T(v) = -7u + 2v.  Exprese 
T(u) y T(v) como combinación lineal de los vectores de la 
base B y a partir de esto encuentre la matriz [T]B.  

Ejercicio:  Considere F:                 P2[x]  la aplicación 

lineal tal que F(1,0,2) = 2x – 3,  F(0,1,2) = 1 + x2 y   

F(0,0,1) = 2x – x2.   Sea  G: P2[X] lineal cuya 

matriz de representación en las bases B = {1, 1+x,  1+x+x2}  

y  C = {(1,0), (0,3)} es                .  Determine la 

matriz                (bases canónicas). 

3ℜ

2ℜ








 −
=

210
011

]G[ C
B

]FG2[ o
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Diagonalización de matrices reales 
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Valores y vectores propios         
Sea V espacio vectorial real. En lo que sigue, T será 
una transformación lineal de V  en  V; por lo tanto 
cualquier matriz asociada a  T  es una matriz cuadrada.      

Un escalar           se llama valor propio de T
(o valor característico) si  existe                    tal 
que                     

ℜ∈λ
0   v,Vv ≠∈

.v)v(T λ=

Si            es un valor propio de T, cualquier 
tal que                  se  llama vector propio de T (o vector 
característico de T) asociado al valor propio     .             

0   v,Vv ≠∈
v)v(T λ=

ℜ∈λ

λ
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Ejemplo: es un valor propio de la aplicación lineal
28y)-75x  y,10(27x )y  ,x(T   ;      :T 22 −=ℜ→ℜ

2=λ

puesto  que  T(2, 5) = (4, 10) = 2 (2, 5).    En este caso,     
v = (2,5) es un vector propio de T asociado al valor propio 2.  

Si       es un valor propio de T y denotamos 
por      al conjunto de todos los vectores 
propio de T asociados al valor propio    , 
entonces es fácil mostrar que        resulta ser 
un subespacio de V.  El subespacio se 
llama espacio propio de T asociado a       . 

λ

λ

λ

λV

λV

λV

}  v  T(v)  /  V v{V λ=∈=λ
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es un valor propio de T         

¿Cómo determinamos los 
valores propios de T?

λ ⇔

⇔λ=≠∈∃     v)v(T  que    tal0  v,V v

⇔=λ−≠∈∃     0v)v(T  que    tal0  v,V v

⇔λ∈≠∈∃     )I-(T Kerv   0,  v,V v n

⇔=λ−≠∈∃     0)v)(IT(  que    tal0  v,V v n

⇔λ−      invertible   no    IT n
0   ]IT[ det n =λ−
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)I  - (TKer         
0}  )(v)I  - (T  /   v{       

0}   v - T(v)  /   v{       

}  v  T(v)  /   v{V

n

n
n

n

n

λ=
=λℜ∈=

=λℜ∈=

λ=ℜ∈=λ

Observe que es un polinomio en      de 
grado n  y  los  valores  propios de T  son  las  raíces reales 
de dicho polinomio o de la ecuación                .   Note que 

  ]IT[ det)(p nλ−=λ λ

Por otra parte,         

Es decir,  los vectores propios de T  asociados a      son los 
vectores del kernel de la transformación lineal  .                  ]IT[ nλ−

λ

0)(p =λ

0 T)-Idet(        0I)-det(T        0)(p =λ⇔=λ⇔=λ
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Ejemplo: Sea  T  la transformación lineal      
  x)y,( )y  ,x(T   ;      :T 22 −=ℜ→ℜ

La matriz asociada a T es .          






 −
=

01
10

A

Como la “ecuación característica” de T,            

,01      0
1

1
     0T] - I [det       0)(p 2 =+λ⇔=

λ−
λ

⇔=λ⇔=λ

no tiene raíces reales, T no tiene valores propios.            

Ejercicio: Muestre que los valores propios de la 
siguiente transformación lineal  T  son  1  y  2.  

2y)2x  z,-2y2x  z,-y(3x )z ,y ,x(T   ;      :T 33 +++=ℜ→ℜ
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Ejemplo: Los vectores propios de la transformación lineal  

2y)2x  z,-2y2x  z,-y(3x )z ,y ,x(T   ;      :T 33 +++=ℜ→ℜ

se encuentran en y  en                      , es decir,               ]ITKer[ 3−

><=
=+
=+

ℜ∈=−

 } 2) 0, (1, {                      

}    
0  z-2y2x
0   z-y2x

 /  z) y, (x, { ]ITKer[ 3
3

><=
=+

=
=++

ℜ∈=−

 } 2) 1, (1, {                      

}    
0  2z-2y2x

0    z -2x 
0     zyx

 /  z) y, (x, { ]I2TKer[ 3
3

  ]2I-Ker[T 3
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Diagonalización
Se dice que una base  B  de  V diagonaliza a la 

transformación lineal T si la matriz           asociada a T es 
una matriz diagonal.  Cuando tal base  B  existe, se dice 
que  T  es diagonalizable.  

Una matriz                    es diagonalizable si la aplicación 
lineal asociada a  A  lo es.        

B]T[

)(MA n ℜ∈

¿Cuándo T es 
diagonalizable?

Teorema: T  diagonalizable si y sólo si existe 
B  base de V  formada por vectores propios de T.            
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En efecto, sea  B = {v1, ….., vn}  base de V con  v1, ….., vn

vectores propios de T.  Entonces,          

nn21nnn

n221222

n211111

v . . . . . v0v0v  )v(T
. . . . . .. . . . . .

0v . . . . . vv0  v  )v(T
v0 . . . . . v0v  v   )v(T

λ+++=λ=

++λ+=λ=
+++λ=λ=

donde    son valores propios de T no necesariamente 
distintos. La matriz de representación de T en la base B es:    



















λ

λ
λ

=

n

2

1

B

. . . .00
. . . .. . . .. . . .. . . .

0. . . .0
0. . . .0

]T[

iλ
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Ejemplo: La transformación lineal  
3z)y88x-  4z,-y78x  4z,y8(-9x )z ,y ,x(T +−++−=

 ;      :T 33 ℜ→ℜ

tiene dos valores propios:  3  y  -1.  Los espacios propios 
asociados son,               

><=  } 1) 1,- (1, {     ]3I-Ker[T 3

><=+  } 2) 1, (0,  2), 0, (1, {     ]IKer[T 3

Y  B = {(1, -1, 1), (1, 0, 2), (0, 1, 2)} es una base de         que   
diagonaliza a T; en este caso,              

3ℜ

















−
−=

100
010
003

]T[ B
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Ejemplo: La transformación lineal   ;      :T 33 ℜ→ℜ
y)22x  z,y22x  z,-y(3x )z ,y ,x(T +−++=

tiene dos valores propios:  1  y  2.  Sin embargo, T no es 
diagonalizable.  Los espacios propios asociados son,               

><=  } 2) 1, (1, {     ]2I-Ker[T 3

><=  } 2) 0, (1, {     ]I-Ker[T 3

Y  es imposible encontrar una base de         formada por 
vectores propios de T.              

3ℜ
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Otros criterios de diagonalización

Teorema: T  diagonalizable si y sólo si el 

polinomio característico de T tiene la   forma  

con y          espacio propio 
de T asociado al valor propio     

k21 d
k

d
2

d
1 )-(  . . . . . . )-()-(  )p( λλ⋅⋅λλλλ=λ

i
V dim  di λ=  V

iλ
 .iλ

Por ejemplo, el polinomio característico de la transformación 
lineal es  3z)y88x-  4z,-y78x  4z,y8(-9x )z ,y ,x(T +−++−=

2)13)(-(  )p( +λλ=λ

Y ; luego T diagonalizable.   2V dim    ,1V dim -13 == =λ=λ
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Teorema: T  diagonalizable si y sólo si   

donde    son los valores propios 
de T y      es el espacio propio de T 
asociado al valor propio     

k21
Vdim......VdimV dim  V dim λλλ +++=

 V
iλ

 .iλ

k1  , ..... , λλ

Por ejemplo, en el caso de la transformación lineal 

diagonalizable del ejemplo anterior

se tiene que   
3z)y88x-  4z,-y78x  4z,y8(-9x )z ,y ,x(T +−++−=
3

-13 dim21V dim    V dim ℜ=+=+ =λ=λ
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El hecho que  T  sea diagonalizable significa 
que la matriz [T] asociada a T, es “similar” a la 
matriz diagonal           en el sentido siguiente:B]T[

P ]T[P]T[ 1
B

−=

Ejercicio: Determine si la siguiente transformación 
lineal  T  es o no es diagonalizable.

2z)-y66x-  z,5y7x  z,y-(3x )z ,y ,x(T   ;      :T 33 ++−+=ℜ→ℜ

Existe P matriz invertible tal que

Ejercicio: Demuestre que los valores propios de 
una matriz triangular son los elementos 
de la diagonal.

)a(A ji= iia


